NASA TECHNICAL NOTE

LOAN COPY: RETIDENT KAFB, LOAN COPY: RETIDENT KAFB, LOAN KAFB, LOA

MONTE CARLO METHOD
FOR THE CALCULATION OF
TRANSPORT PROPERTIES IN
A LOW-DENSITY IONIZED GAS

by Charles M. Goldstein Lewis Research Center Cleveland, Ohio

MONTE CARLO METHOD FOR THE CALCULATION OF TRANSPORT PROPERTIES IN A LOW-DENSITY IONIZED GAS

By Charles M. Goldstein

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTENTS

\mathbf{Pag}	е
SUMMARY	1
INTRODUCTION	1
MONTE CARLO METHOD	2
General Description	2
Heuristic Sketch of the Method	4
FORMULATION OF ELECTRON DIODE PROBLEM	4
Thermionic Emission	6
Monoenergetic Emission	7
MONTE CARLO SOLUTION	7
Thermionic Emission	7
Initial conditions	7
Distance to collisions	8
Scattering angle	8
Charge density	9
Current to collector	9
Monoenergetic Emission	0
COMPUTATIONAL METHODS	0
Evaluation of Potential and Potential Minimum	0
Choosing from the Distribution $e^{-x} dx \dots $	
Location of Collision	2
CONVERGENCE AND STANDARD DEVIATION	3
RESULTS	4
Thermionic Emission	4
Monoenergetic Emission	8
DISCUSSION OF RESULTS	0
CONCLUDING REMARKS	0
APPENDIXES	
A - RANDOM VARIABLES	2
B - COMPUTER PROGRAMS	8

	Ι	Page
C - FLOW CHARTS AND PROGRAM LISTINGS		32
D - SYMBOLS	 •	50
REFERENCES		52

MONTE CARLO METHOD FOR THE CALCULATION OF TRANSPORT PROPERTIES IN A LOW-DENSITY IONIZED GAS

by Charles M. Goldstein Lewis Research Center

SUMMARY

An introduction to the general Monte Carlo method is presented, along with a discussion of its scope of application to plasma physics. This is followed with a heuristic sketch of the method. The problem of electron flow through a perfect Lorentzian gas in a parallel-plane diode is then formulated. The Monte Carlo solution is discussed in detail along with the relevant computational techniques employed. (Pertinent concepts from the theory of random variables are included in an appendix.)

The effects of mean free path on current-voltage characteristics, density distribution, and potential distribution are presented for two cases - monoenergetic and thermionic emission. Results indicate that electron-neutral elastic collisions can have a significant effect on the current-voltage characteristics for electrode separations as small as one mean free path in the case of thermionic emission, and one-half mean free path in the case of monoenergetic emission.

INTRODUCTION

A major difficulty in the study of low-density ionized gases is the lack of suitable analytical methods for determining the effects of collisions. "Low density" is here defined as those situations in which a characteristic dimension is of the order of a few mean free paths, that is, the regime wherein neither a collisionless nor a continuium approximation can be expected to represent the actual situation. This regime is of importance in low-pressure thermionic diodes, plasma sheaths (probe theory), ion engines, and cross-section measurements.

Much effort has been expended to obtain solutions of the Boltzmann transport equation for low-density neutral gases (ref. 1). Little work has been done on the extension of these methods to low-density ionized gases. Recently, however, Sockol

(ref. 2) has succeeded in numerically integrating the Boltzmann transport equation for a particular low-density ionized gas problem. Unfortunately, the numerical integration is very difficult for even the simplest hard-sphere collision cross section; the feasibility of extending this method for more complex collision cross sections has not as yet been investigated.

This report presents a new method for determining analytically the transport properties in a low-density ionized gas for an arbitrary collision cross section. Results with this method are given for two electron transport problems. The method proposed is, essentially, a consistent-field Monte Carlo method. Since the Monte Carlo method has not been widely applied in the fields of plasma physics or ionized gases, a brief introduction is presented; a review of the pertinent random variable theory is given in appendix A. The ability to use this method effectively is strongly dependent on numerical procedures and "tricks of the trade." A section is therefore included on the various computing techniques; in addition, a complete program listing plus selected flow charts are to be found in appendix C. A discussion of two important computing programs is presented by their author, H. Renkel, in appendix B.

The general method of calculating transport properties is applied herein to the problem of electron transport in a perfect Lorentzian gas with a hard-sphere collision cross section; in particular, the method is employed to obtain electron flux characteristics in a plane-parallel diode including the effect of electron-neutral collisions.

Langmuir (ref. 3) published the first correct solution to the effect of space charge and initial velocities on the potential distribution and thermionic current between parallel-plane electrodes for no collisions (vacuum diode). He also studied (ref. 4) the problem of diffusion of electrons back to the emitter for the case of a very small mean free path. These results are extended herein to the case of electron-neutral collisions for which the mean free path is not necessarily small with respect to the interelectrode separation.

MONTE CARLO METHOD

General Description

The Monte Carlo method is, in general terms, a technique for solving physical and mathematical problems by using random sampling. Although the term ''Monte Carlo method' has been subjected to various interpretations, an acceptable statement of the method as applied herein has been given by Donsker and Kac (ref. 5): 'The Monte Carlo

approach consists in permitting a 'particle' to play a game of chance, the rules of the game being such that the actual deterministic and random features of the physical process are step by step exactly imitated by the game. By considering very large numbers of particles, one can answer such questions as the distribution of the particles at the end of a certain period of time, the number of particles to escape through a shield of a specific thickness, etc. One important characteristic of the preceding approach is that the functional equation describing the diffusion process is bypassed completely, the probability model used being derived from the process itself.'

A short history of Monte Carlo applications is to be found in the paper by Goertzel and Kalos (ref. 6). An excellent review of the basic principles is given in reference 7, and an extensive bibliography has recently been compiled by Kraft and Wensrich (ref. 8). This method has, in recent years, been employed with considerable success to a wide variety of problems, most notably in the area of nuclear shielding problems (viz., neutron transport). These latter problems are linear in the sense that the neutron trajectories are independent of the neutron density. More recently, the method has been extended to certain nonlinear problems in radiation transport (ref. 9).

There have been some applications of the Monte Carlo methods to the investigation of one-dimensional electron (ion) diodes, but these studies are more often referred to as computer-simulated solutions, or "computer experiments." The difference in terminology reflects the fact that these studies approximate the physical model by a finite number of current sheets, which are then followed deterministically through all mutual interactions by the computer. The Monte Carlo method, on the other hand, most frequently implies repeated, stochastically independent trials. A short history of the aforementioned computer experiments is to be found in the paper by Burger (ref. 10). These studies do not take collisions into account, nor does it seem practical to do so because of the demands this type of analysis would impose on computer storage requirements.

Itoh and Musha (ref. 11) employed a Monte Carlo calculation to determine the ionization and excitation coefficients of electrons in a uniform electric field E for given gas pressure P. They also computed drift velocity and mean energy for several values of E/P. Although the authors state that this method can be extended to strong, non-uniform electric fields, it cannot provide a suitable model from which diode characteristics could be obtained since space-charge effects, which introduce a nonlinearity, have not been considered.

Just as the nonlinearity in the radiation transport problem is characterized by a single parameter, the temperature (ref. 9), so the nonlinearity in the charge-particle transport problems is characterized by the potential. Unlike the photons in the former problems, however, the charged particles experience a body force proportional to the first derivative of the potential.

Heuristic Sketch of the Method

First the relatively simple problem of the attenuation of a molecular beam by a homogeneous gas shall be considered. If the actual experiment is performed for a given emission flux Γ_{0} and the flux reaching the target (or collector) Γ_{c} is measured, it is reasonable to interpret the ratio Γ_{c}/Γ_{0} as the probability that a unit of emitted flux will reach the target. If a knowledge of the scattering probabilities of a single molecule passing through the same gas is assumed, it is possible on a computer to follow a certain number N_{0} , one at a time, and tally the number N_{c} that reach the collector (the others are scattered back to the emitter). Then the ratio N_{c}/N_{0} would be an approximation to the experimentally determined Γ_{c}/Γ_{0} . Since the experimental fluxes may be of the order of 10^{18} particles per square centimeter per second or higher, it is not conceivable, even in this relatively simple situation, to "do the experiment" on the computer. As N_{0} becomes larger, however, the approximation N_{c}/N_{0} becomes better. Statistical analysis provides a means of estimating how good the approximation is.

For the case of charged particles flowing through a gas, the situation is complicated by the nonlinearity introduced by the space charge. That is, the flow of charged particles is not only influenced by collisions with the gas molecules, but also by the potential field; the potential field, itself, is a function of the density of charged particles. This is the situation considered herein. To start, for a given collector potential $\mathscr{V}(L)$ a potential distribution $\mathcal{V}(x)$ is assumed. An approximation to the current reaching the collector, $N_{\rm c}/N_{\rm o}$, is then obtained as in the molecular beam case. In addition, however, the contribution to the density, at preselected data points, of each charged particle is also tallied. These densities are used to solve Poisson's equation for a new potential distribution. The process is then repeated (i.e., iteration is performed on the potential distribution) until the potential distribution "converges." Convergence must here be considered only in a statistical sense; when further iterations produce only random fluctuations in the potential distribution, "convergence" is assumed. Random fluctuations are, of course, to be expected, since only a small statistical sample No of the total flux is considered. After convergence has been achieved, succeeding iterations may be considered, in the parlance of statistical analysis, as independent trials; each resulting approximation N_c/N_o may be considered a sample mean (appendix A). An analysis of the sample means provides a way of estimating the accuracy of the result.

FORMULATION OF ELECTRON DIODE PROBLEM

The physical model of an infinite parallel-plate diode is depicted in figure 1. In the same figure the types of scattering that may occur for a monotonic potential distribution

Figure 1. - Diode model and types of scatter.

Figure 2. - General potential distribution.

are shown. In figure 2 a typical potential distribution is shown. When a potential minimum exists as indicated in this figure, a certain portion of thermionically emitted electrons will be rejected back to the emitter even in the absence of collisions. The existence of a potential minimum less than both emitter and collector potentials defines the space-charge-limited regime of diode operation.

The perfect Lorentzian gas assumption implies an infinite mass target particle, and hence the laboratory system becomes equivalent to the center of mass system. Since hard-sphere collisions result in isotropic scattering in the center of mass system, the equivalence of the two systems in this case results in isotropic scattering in the laboratory system.

Isotropic scattering means, by definition, that the probability of scattering into unit solid angle is the same for all angles. The probability distribution function (hereafter, p.d.f., see appendix A) is therefore the constant $1/4\pi$. Hence the probability of scattering into solid angle

 $d\Omega$ is $d\Omega/4\pi$. In terms of the scattering angle θ , this becomes

$$\frac{\mathrm{d}\Omega}{4\pi} = \frac{\sin\,\theta}{2}\,\,\mathrm{d}\theta\tag{1}$$

Consequently, the p.d.f. of scattering into angle $d\theta$ is simply $\sin \theta/2$.

The assumption of hard-sphere collisions also implies a constant mean free path λ . Now if that group of electrons that has just collided is considered, then the fraction of these electrons that will suffer collisions in distance ℓ_c is (ref. 12, p. 102, eq. (98a))

$$1 - e^{-\alpha \ell} c \tag{2}$$

where

$$\left.\begin{array}{l}
\ell \equiv s/L \\
\alpha \equiv L/\lambda
\end{array}\right\} \tag{3}$$

and s is the path length and L the electrode spacing.

Thermionic Emission

For this case it is assumed that electrons are emitted with a half-Maxwellian velocity distribution

$$f(u, V) du dV = (4/\sqrt[4]{\pi})Ve^{-(u^2 + V^2)} du dV$$
 (4)

where

$$u = v_{x} / \sqrt{2kT/m}$$

$$V = \sqrt{v_{y}^{2} + v_{z}^{2}}$$

$$\sqrt{2kT/m}$$
(5)

The one-dimensional Poisson's equation, in dimensionless variables, becomes

$$\varphi^{\dagger\dagger}(y) = C \ n(y) \tag{6}$$

where

$$y = \frac{x}{L}$$

$$\varphi = \frac{eV}{kT}$$

$$n = \frac{\hat{n}}{n_0}$$
(7)

and

$$C = 8(\pi/2kT)^{3/2}m^{1/2}eJ_0L^2$$
 (8)

Monoenergetic Emission

The analysis for monoenergetic emission directly parallels that for thermionic collision with a few minor changes. The dimensionless variables u, V, and φ are now defined as

$$u = \frac{v_x}{v_0}$$

$$V = \frac{\sqrt{v_y^2 + v_z^2}}{v_0}$$

$$\varphi = \frac{2eV}{mv_0^2}$$
(9)

The constant parameter C in Poisson's equation (eq. (6)) becomes

$$C = \frac{8\pi e L^2 J_o}{m v_o^3}$$
 (10)

MONTE CARLO SOLUTION

Thermionic Emission

<u>Initial conditions</u>. - It must be emphasized that the test ''electrons'' are not chosen from the half-Maxwellian distribution (eq. (4)). Although test ''electrons'' are mentioned, the statistics are obtained for units of electron flux - not units of charge. Hence, the initial velocities must be chosen from the distribution of flux in velocity space

$$\sqrt{\pi} \text{ uf(u, V) du dV} = 4uVe^{-(u^2 + V^2)} \text{ du dV}$$
 (11)

from equation (4). Since the u and V components of velocity are independent, the respective marginal distributions (see ref. 13, p. 287) $F_{\rm u}({\rm V})$ and $F_{\rm V}({\rm u})$ can be obtained:

$$F_{u}(V) = \int_{0}^{\infty} du \int_{0}^{V} 4uV e^{-(u^{2}+V^{2})} dV$$
 (12)

$$F_{V}(u) = \int_{0}^{\infty} dV \int_{0}^{u} 4uV e^{-(u^{2}+V^{2})} du$$
 (13)

But these marginal distributions are simply the cumulative distribution functions (hereinafter, c.d.f.) for u and V, respectively. From equations (A16) and (A15),

where R_u and R_V are random numbers between 0 and 1. Equations (14) are then used to determine the initial velocities of each test electron.

<u>Distance to collisions</u>. - The distance to collision must be obtained at the start of each new electron trajectory (i.e., on emission from emitter or after a collision).

Equation (2) can also be interpreted as the probability that an electron will suffer a collision in a distance $\ell \leq \ell_c$. This, however, is just the definition of the c.d.f. $F(\ell_c)$ (see appendix A). Hence, from equation (A16) can be obtained a relation between the random numbers R_ℓ and the distribution of path length to collision:

$$R_{\ell} = 1 - e^{-\alpha \ell} c \tag{15}$$

where

$$\ell_{c} = -\left(\frac{1}{\alpha}\right) \ln(1 - R_{\ell})$$

$$= -\left(\frac{1}{\alpha}\right) \ln(R_{\ell}) \tag{16}$$

Scattering angle. - If a collision takes place, then the scattering angle θ must be

determined. From the p.d.f. (eq. (1)), the c.d.f. $F(\theta)$ can immediately be obtained (compare eq. (A3) in appendix A):

$$\mathbf{F}(\theta) = \frac{1 - \cos \theta}{2} \tag{17}$$

But in this case the c.d.f. can take on the values $-1 \le F(\theta) \le 1$ (forward and backward scattering). Hence, in order to choose randomly from this range (see eq. (A16)), let

$$\cos \theta = 1 - 2R_{\theta} \tag{18}$$

where once again $0 \le R_{\theta} \le 1$. Equation (18) is the final result since only $\cos^2\theta$ (and $\sin^2\theta = 1 - \cos^2\theta$) is of interest in the actual computations.

Charge density. - The data points y_i are selected by the curve-fitting subroutine (see appendix B where y_i corresponds to the arguments x_{α}). The contribution of the k^{th} test electron (unit of flux) of velocity $u_k(y)$ to the charge density at each y_i is

$$n_k(y_i) = \frac{1}{\sqrt{\pi} u_k(y_i)}$$
 (19)

where

$$u(y) = \sqrt{u_0^2 + \varphi(y) - \varphi(y_0)}$$
 (20)

 y_0 is the position of the last "event" (collision or emission), and u_0 is the initial velocity immediately after the last event (i.e., at the beginning of a new trajectory).

The tallied density at a data point y_i for a total of N_0 histories is then

$$n(y_i) = \frac{1}{\sqrt{\pi} N_O} \sum_{k} \frac{1}{u_k(y_i)}$$
 (21)

where the sum over k may be greater than, equal to, or less than N_O because of collisions and turning points in the potential field.

<u>Current to collector</u>. - The ratio of current density to the collector J to the emitted current density J_{Ω} for each iteration is computed from the relation

$$\frac{J}{J_O} = \frac{N_C}{N_O} \tag{22}$$

where N_c is the number of test electrons reaching the collector.

Monoenergetic Emission

The solution for monoenergetic emission is exactly the same as for thermionic emission with two exceptions. First, instead of choosing from an initial distribution of velocities the initial conditions are, for every electron, u=1 and V=0, and second, the density for N_O histories becomes (cf. eq. (14))

$$n(y_{i}) = \frac{1}{N_{o}} \sum_{k} \frac{1}{u_{k}(y_{i})}$$
 (23)

COMPUTATIONAL METHODS

The original program was based on the assumption that Monte Carlo computations would be limited to only a few collisions because of the requirement of reasonable computor execution times. Hence, this program was optimized for $L/\lambda < 1$. The results proved this assumption overly pessimistic, but the program was not revised for the present report.

Evaluation of Potential and Potential Minimum

After a curve fit of the density is obtained (subroutine CHEBY, appendix B), the density distribution is given by a power series in y:

$$n(y) = a_0 + a_1 y + a_2 y^2 + \dots + a_n y^n$$

$$= \sum_{i=0}^{k} a_j y^j$$
(24)

where k is the degree of the fit.

The potential is obtained by substituting equation (24) in Poisson's equation (eq. (6)) and integrating n(y) term by term:

$$\varphi(y) = c_0 + cy + C \sum_{j=0}^{k} \frac{a_j}{(j+1)(j+2)} y^{j+2}$$
 (25)

But since

$$\varphi(o) = 0$$

equation (25) can be written

$$\varphi(y) = \sum_{j=1}^{k+2} c_j y^j$$
 (26)

$$c_{j} = \frac{a_{j-2}}{j(j-1)} \qquad j \ge 2$$

$$c_{1} = \varphi(1) - \sum_{j=2}^{k+2} c_{j}$$
(27)

After the a_j have been determined (subroutine CHEBY), the c_j are computed in subroutine COEF(2).

Originally, equation (26) was employed (with k usually equal to 10) each time $\varphi(y)$ was evaluated, but this proved too time consuming. For this reason it was decided to tabulate $\varphi(y)$ at the beginning of each iteration and use the tabulated values whenever possible. The interelectrode space was subdivided into 1024 regions, and the 1025 values of $\varphi(y)$ were tabulated in subroutine MINPHI. At the same time, φ was tested at each evaluation for the minimum value. Hence, the location of the potential minimum was ascertained within $\pm 1/2048$ of the interelectrode separation. In addition, φ was tabulated at data points y_i where the density was to be tallied. The results of tabulating the potential was an eight-fold (and greater) decrease of execution time.

Choosing from the Distribution $e^{-X} dx$

It is pointed out in appendix A that choosing random values \mathbf{X}_k from the distribution whose p.d.f. is $e^{-\mathbf{X}}$ dx is equivalent to choosing random numbers \mathbf{R}_k from the uniform distribution (eq. (A7)) and using equation (A15):

$$X_{k} = -\ln(R_{k}) \tag{28}$$

In the present problem, it is possible to identify the random variables u^2 and V^2 with X, and ℓ_c with $(1/\alpha)X$ (eqs. (14) and (16), respectively). The random numbers R_k are obtained from a pseudo-random-number generator of the congruence-method type (ref. 5). This random generator is part of the computor library here at Lewis Research Center.

Although the desired random variable can be obtained directly from equation (28), it was decided to tabulate the \mathbf{X}_k instead. A table (1025 entries) was constructed of \mathbf{X}_k (subroutine CUMVEL) at the beginning of the program. The table look-up is five times as fast as employing equation (28) each time.

Location of Collision

If a distance to collision ℓ_c is given, the location of the collision \mathbf{y}_c is obtained by solving

$$\ell_{c} = \int_{y_{0}}^{y_{c}} \sqrt{1 + \frac{v^{2}}{u_{0}^{2} + \varphi(y') - \varphi(y_{0})}} dy'$$
 (29)

Two methods were used to minimize the number of times the integrand, and specifically $\varphi(y)$, need be evaluated. First, Simpson's rule was used in a search routine to allow the use of the tabulated values of $\varphi(y)$ (see Evaluation of Potential and Potential Minimum section, p. 10), and then the step size (in the use of Simpson's rule) was made to depend on the ratio V^2/u^2 .

The procedure employed for obtaining a reasonable step size can be best explained by an example. Assume that y_c falls between any two points y_o and y_f . For a straightforward application of Simpson's rule, three values are needed of the integrand in equation (29) at three equidistant values of y: y_1 , y_2 , y_3 . Initially $y_1 = y_0$. The $\varphi(y)$ has already been tabulated at 1025 values of y given by

$$y_{m} = \frac{m}{1024}$$
 $m = 0, 1, 2... 1024$ (30)

Consequently, y_0 and y_f will always be selected equal to tabulated values of y_{m_0} and y_{m_f} . Hence, the first estimate of step size Δ in units of m is given by

$$\Delta = \left\lceil \frac{m_f - m_o}{4} \right\rceil \tag{31}$$

where [] refers to the integral value. A second estimate of step size (obtained as a result of trial and error computations) is given by

$$\Delta' = 2^{4-M}$$

where

$$M = \left[\log_{10}(v^2/u^2)\right]$$

Then, the step size is taken as the minimum of the two estimates.

If the value of Δ from equation (31) is zero (i.e., distance to collision is less than four steps), then Δ is set equal to

$$\Delta = \left\lceil \frac{m_f - m_o}{2} \right\rceil$$

If this should be zero, then the collision location y_c is arbitrarily set equal to y_{m_f} .

CONVERGENCE AND STANDARD DEVIATION

It was observed, during tests of the program, that convergence (in the statistical sense, p. 4) was obtained in the first few iterations. Since the succeeding iterations are treated as independent trials, the problem arises in a production run of just how to decide when convergence occurs. This was done in the following manner.

Each case (given anode potential) was run for a given number of iterations, for example, 15. At the end of each iteration the sample means $n(y_i)$ and J/J_0 (see eqs. (21) to (23)) were stored. Each of these stored values is analogous to an experi-

TABLE I. - EFFECT OF VARIOUS PARAMETERS ON STANDARD DEVIATION AND EXECUTION TIME

T		771 4 3 -	Dimension	G	C4	Gammia	Manusham of	Calliniana	W	
Item	Type of	Electrode	Dimension-	Current	Standard	Sample	Number of	Comsions	Execution	
ł	emission	spacing	less collec-	density	deviation,	size	iterations	(for one	time,	
ļ		to mean	tor potential,	ratio,	$\sigma_{\mathbf{J}}$			iteration)	min	
		free path	$\varphi(1)$	J/J _o						
		ratio,								
		L/λ		:						
1	Mono-	0, 1	0. 75	0.961	0.001	5 000	10	483	2, 42	
2	ener-		2.0	. 972	. 0012	5 000	10	503	2.46	
3	getic		2.0	. 971	.0019	2 000	5	213	.51	
4		. ↓	4.0	. 986	. 0005	10 000	10	1 079	5.2 8	
5		. 5	4.0	. 918	.0015	2 000	10	1 257	2.48	
6		1.0	4.0	. 839	.0015	1 000	10	1 483	2.09	
7	Thermi-	5.0	12.0	. 358	. 009	1 000	15	8 475	17. 7	
8	onic	5.0	32.0	. 672	. 003	1 000	18	16 367	37.65	
9		.1	10.2	. 942	.0016	1 000	10	147	1.49	
10	 	. 1	10. 2	. 942	. 0008	10 000	10	1 198	14, 18	

mental data point. Carrying the analogy further, at the end of 15 runs (iterations) there were sets of 15 data points for each of the sample means. If this were an experiment, it would be expected that each set of 15 data points would have a certain amount of "scatter" due to random error. In the present situation, however, the iterations before convergence will produce data points with a nonrandom error. The problem then becomes one of simply eliminating the iterations that introduce a nonrandom error. This was accomplished by obtaining the sample mean and standard deviation (see appendix A) of each set of 15 data points. Then from each set only those points were retained that were within three standard deviations of the sample mean. The final values of sample means and standard deviation (given in table I) were obtained from the remaining data points. In all cases, the number of iterations treated as independent trials was of the order of ten.

RESULTS

Thermionic Emission

The effect of mean free path on the current-voltage characteristic is shown in figure 3. The solid line, $L/\lambda=0$, represents the collisionless solution of Langmuir (ref. 3). The Monte Carlo calculations indicated along this curve were undertaken as a check on the computer program. These particular results were obtained with 5000 histories per iteration and ten iterations. The execution time for each point on the curve varied between 2.5 and 4.0 minutes.

Figure 3. - Effect of mean free path on current-voltage characteristics for thermionic emission. Dimensionless constant C = 50.

The two solid data points on the curves for $L/\lambda = 1$ and 5 represent the conditions where the slope of the potential is zero at the emitter. The O's on the curve $L/\lambda = 1$ indicate the results of an independent solution of Boltzmann's transport equation for this problem (ref. 2).

The curve for $L/\lambda = 5$ was not extended to lower $\varphi(1)$ because of a loss in precision in the curve-fitting routine program (appendix B) used to fit the density distribution. A more flexible routine is being developed.

The effect of potential on the electron density distribution is shown in figure 4. From the emitter out to about one mean free path, the density of the higher energy electrons is less than that of the lower energy electrons as would be expected under conditions of no collisions. The actual decrease in the magnitude of the density at the emitter surface, however, indicates that in the higher potential case more of the backscattered electrons are being turned about by the potential field before reaching the emitter. This can be best understood by considering the effect of an accelerating potential field on the cone of capture at the emitter for backward scattering (see fig. 5). This cone of capture may be defined by a polar angle θ^* . It will suffice to consider a first collision whereby the electron has initial energy of $u_0^2 + V_0^2$ and the collision occurs at x_c . The magnitude of the x-component of velocity after scatter becomes

$$u^{2} = \left[u_{O}^{2} + V_{O}^{2} + \varphi(x_{C})\right] \cos^{2}\theta \tag{32}$$

Figure 4. - Effect of anode potential on electron density distribution for thermlonic emission. Dimensionless constant C = 50; electrode spacing to mean free path ratio $L/\lambda = 5$.

If the electron is to reach the emitter against the monotonic potential field $\varphi(x) \ge 0$, then u^2 must satisfy the condition

$$u^2 \ge \varphi(x_c) \tag{33}$$

When equation (33) is substituted into equation (32), θ^* is defined by

$$\cos^2 \theta * = \frac{\varphi(\mathbf{x}_c)}{\mathbf{u}_o^2 + \mathbf{V}_o^2 + \varphi(\mathbf{x}_c)}$$

or

Figure 5. - Cone of capture at emitter.

$$\cos^{2}\theta * = \frac{1}{1 + \frac{u_{o}^{2} + V_{o}^{2}}{\varphi(x_{o})}}$$
(34)

Equation (34) shows that an increase in potential $\varphi(\mathbf{x}_c)$ increases $\cos^2 \theta^*$ and reduces θ^* .

Figure 6. - Effect of mean free path on electron density distribution for thermionic emission. Dimensionless conconstant C = 50; dimensionless collector potential $\varphi(1) = 32$.

Thus, the higher the potential field, the smaller is the cone of capture at the emitter.

This same phenomenon accounts for the crossover in the curves of figure 4 away from the emitter. Since fewer of the backscattered electrons in the higher electric field case reach the emitter, this implies that more are turned about by the field. The presence of turning points in the electron trajectories affects the charge density in two ways. Since the u-component of velocity is zero at a turning point, the contribution to the charge density there is exceptionally high; in addition, the path length of an electron in the neighborhood of a turning point is much greater than the distance traveled normal to an electrode surface, these electrons suffer more collisions, and, hence, contribute more strongly to the charge density. This latter point is vividly illustrated by comparing the typical number of collisions per iteration for the two cases of figure 4 (items 7 and 8, table I, p. 14). In the low potential case ($\varphi(1) = 12$) over 8000 collisions were observed in one iteration, while for the high potential case ($\varphi(1) = 32$) over 16 000 collisions were observed. The increase in number of collisions accounts for the crossover in the two curves of figure 4 and the higher density for y > 0.2 in the case $\varphi(1) = 32$.

The effect of mean free path on the density and potential distributions for constant collector potential are shown in figures 6 and 7, respectively. As expected, the effect of collisions is to increase the charge density and, therefore, decrease the potential in the interelectrode space.

Figure 7. - Effect of mean free path on potential distribution for thermionic emission. Dimensionless constant C = 50.

Monoenergetic Emission

The corresponding diode characteristics for monoenergetic emission are shown in figures 8 to 11. The author has, at present, no hypothesis regarding the inflections observed in the current-voltage characteristics (fig. 8) for $L/\lambda=0.5$ and 1.0. The points calculated are reproducible, and each point, as plotted, spans at least plus or minus two standard deviations about the mean J/J_0 . The solid lines represent independent solutions of the Boltzmann equation for this problem in the limit of one collision (ref. 14).

Another noteworthy feature of the monoenergetic emission characteristics is the buildup of charge density in the interelectrode region as the potential is decreased (fig. 9). This increase in charge density is considerably enhanced by the appearance of a potential minimum (upper curve in fig. 9). The potential minimum causes more turning points to occur in the trajectories of the scattered

Figure 8. - Effect of mean free path on current-voltage characteristics for monoenergetic emission. Dimensionless constant C = 10.

Figure 9. - Effect of anode potential on electron density distribution for electron beam. Dimensionless constant $C = 10!\sqrt{\pi}$; electrode spacing to mean free path ratio $U\lambda = 0.1$.

Figure 10. - Effect of mean free path on electron density distribution for electron beam. Dimensionless constant $C = 10/\sqrt{\pi}$; dimensionless collector potential $\varphi(1) = 4$.

Figure 11. - Effect of mean free path on potential distribuion for monoenergetic emission. Dimensionless constant $C = 10/\sqrt{\pi}$.

electrons. Since the u-component of velocity becomes zero at a turning point, the contribution to the charge density of electrons undergoing reflections in the potential field is exceptionally high.

DISCUSSION OF RESULTS

The agreement of the solution obtained by the method proposed in this report and the independent results of Sockol (ref. 2 and fig. 3, p. 15) and Goldstein and Goldstein (ref. 14 and fig. 8) is very gratifying indeed. Most encouraging, with regard to the extension of this method to other problems, are the statistics presented in table I (p. 14). These statistics

show that the execution times needed to obtain reasonable standard deviations σ_J need not be excessive. In turn, they illustrate the effect of the consistent-field constraint (Poisson's equation) on the number of histories needed for good statistics (tens and hundreds of thousands of histories are generally required in other problems where this constraint is absent). It must be emphasized that the execution times illustrated in table I are not the minimum attainable, since no attempt has yet been made to incorporate any of the variance-reducing techniques discussed in the literature (ref. 15).

The execution times in the problems treated herein could most directly be decreased by a more extensive use of tabulated values (eliminating the Gaussian quadratures - hence, obviating completely the need to evaluate $\varphi(y)$ during an iteration) and by optimizing the number of tabulations needed (one may not need 1025 tabular values). In addition, for larger values of L/λ , it would be more appropriate to step along each trajectory from the emitter instead of first ascertaining if a collision has occurred in the interelectrode space as is done in the present case.

CONCLUDING REMARKS

A general method for the calculation of transport properties in a low-density ionized gas has been presented. This method has been applied to two cases of electron transport in a perfect Lorentzian gas. Excellent agreement has been demonstrated by two other independent investigations.

Although the particular applications of the method presented herein employ a hard-

sphere collision model, the great advantage in the Monte Carlo method lies in its inherent ability to provide similar solutions for any given collision model, theoretical or experimental. This includes inelastic, charge exchange, and ionizing collisions. This method is limited, however, to those cases where avalanche ionization does not occur; even in this latter case, however, the Monte Carlo method should be capable of providing the source intensities for the collision term in the Boltzmann equation for arbitrary cross sections, and, therefore, allow a numerical solution of the same.

This method should also be of value in the solution of plasma sheath problems, which are, in reality, just generalizations of the diode problem with different boundary conditions at the emitter and/or collector.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 14, 1965.

APPENDIX A

RANDOM VARIABLES

In this section there is interest only in continuous probabilities for which there exists a continuous function f(x), called the probability distribution function (hereinafter p. d. f.), such that

$$P[a \le X \le b] = \int_a^b f(x) dx$$

$$P[-\infty < X < \infty] = \int_{-\infty}^{+\infty} f(x) dx = 1$$
 (A1)

where

$$f(x) \ge 0$$
 $-\infty < X < \infty$

To speak of a ''random variable'' X (instead of x) is really to define a mathematical point of view. This unambiguous point of view maintains no interest in the exact value of X but instead is only interested in inquiring about the probability of finding X in a certain region (of x-space).

For example, the case is considered where the probability density function is the nondimensionalized Maxwellian distribution of the x-component of flux (eq. (11) integrated over V):

$$f(u)du = 2ue^{-u^2} du u \ge 0$$

$$= 0 u < 0$$
(A2)

In the present analysis, the concern is not for a knowledge of a particular value of u, but rather to determine just what the probability is that a random variable U lies in the range u, $u + \Delta u$.

In the study of a random variable X the function $F_X(x)$ is of great importance:

$$F_{\mathbf{X}}(\mathbf{x}) = \mathbf{P}[\mathbf{X} \le \mathbf{x}] = \int_{-\infty}^{\mathbf{X}} f(\mathbf{x}^{\dagger}) d\mathbf{x}^{\dagger}$$
 (A3)

This $F_X(x)$, or simply F(x), is called the cumulative distribution function (hereinafter c.d.f.) of the random variable X. This function shall be used subsequently.

A concept basic to the discussion of random variables is the expectation value $E[\]$ of a function of a random variable g(X):

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx$$
 (A4)

In particular, the expectation of a random variable itself

$$E[X] = \int_{-\infty}^{+\infty} xf(x)dx$$
 (A5)

is the familiar mean or average value of X, $-\infty < X < \infty$. Of interest in the text is the expectation of the function 1/U of the random variable U distributed as f(u) (eq.(A2)).

$$E\left[\frac{1}{U}\right] = \int_0^{+\infty} \frac{1}{u} 2u e^{-u^2} du$$
$$= 2 \int_0^{\infty} e^{-u^2} du$$

hence,

$$E\left[\frac{1}{U}\right] = \sqrt[4]{\pi} \tag{A6}$$

Choosing from a Distribution

It is first necessary to define what is meant by choosing a sequence of random numbers \mathbf{X}_k from a distribution $\mathbf{f}(\mathbf{x})$ (or equivalently, choosing \mathbf{X}_k distributed as $\mathbf{f}(\mathbf{x})$). It is assumed, for the sake of illustration, that the p.d. f. $\mathbf{f}(\mathbf{x})$ is nonzero only in the interval $0 \le \mathbf{x} \le 1$. This interval is then subdivided into 10 equal subintervals. Then, if the sequence of N random numbers \mathbf{X}_k is distributed as $\mathbf{f}(\mathbf{x})$, a plot of \mathbf{N}_i/\mathbf{N} against the midpoint of the \mathbf{i}^{th} interval (where \mathbf{N}_i is the number of \mathbf{X}_k 's in the \mathbf{i}^{th} interval) should approximate $\mathbf{f}(\mathbf{x})$. Of course, the larger the number N, and/or the smaller the subdivision used, the better will be the approximation.

How is a sequence of random numbers, say U_k distributed as f(u) (eq. (A2)), chosen on a digital computer? In practice, this sequence is not obtained; instead, a sequence of random (pseudo-random) numbers R_k is obtained, distributed as the uniform distribution

$$p(\mathbf{r}) = 0 \qquad \mathbf{r} < 0$$

$$= 1 \qquad 0 \le \mathbf{r} \le 1$$

$$= 0 \qquad \mathbf{r} > 1$$
(A7)

Hence the immediate problem then becomes, given a sequence of random numbers R_k distributed as p(r) (eq. (A7)), how to obtain, even indirectly, a sequence of random numbers U_k distributed as f(u) (eq. (A2)).

Consider two random variables $\, X \,$ and $\, Y \,$ related by the monotonic increasing function

$$Y = h(X) \tag{A8}$$

where X has a known p.d.f. f(x). Then if x and y are corresponding values related by equation (A8),

$$P[Y < y] = P[X < x] \tag{A9}$$

and

$$P[Y < y] = G_{Y}(y) = \int_{-\infty}^{y} g(y')dy'$$

$$P[X < x] = F_{X}(x) = \int_{-\infty}^{x} f(x')dx'$$
(A10)

or

$$\int_{-\infty}^{y} g(y')dy' = \int_{-\infty}^{x} f(x')dx'$$
(A11)

The inverse problem can now be considered. If g(y) and f(x) are given, the functional relationship between y and x (eq. (A8)), such that equation (A9) is still valid,

must be determined. This relation can be easily obtained providing both integrals of equation (A11) can be solved in closed form. For example, if the p.d.f.'s p(r) (eq. (A7)) and f(u) (eq. (A2)) are employed,

$$\int_{0}^{R} p(r)dr = \int_{0}^{U} f(u)du$$
 (A12)

$$\int_{0}^{\mathbf{R}} 1 \, d\mathbf{r} = \int_{0}^{\mathbf{U}} 2u e^{-u^{2}} \, du \tag{A13}$$

$$R = -e^{-U^2} + 1 (A14)$$

or

$$U^2 = -\ln(1 - R)$$

but since R is a random number between 0 and 1, 1 - R is also a random number between 0 and 1; hence,

$$U^2 = -\ln R \tag{A15}$$

is the required functional relationship between U and R. Therefore, only a sequence of random numbers R_k from the uniform distribution p(r) (eq. (A7)) need be obtained, and then equation (A15) can be used to obtain a sequence of random numbers U_k distributed as f(u) (eq. (A2)).

Generalizing the previous procedure to obtain a sequence of random numbers \mathbf{X}_k distributed as $f(\mathbf{x})$, and given a sequence of random numbers \mathbf{R}_k from the uniform distribution (eq. (A7)), it is only necessary to solve the equation

$$R_{k} = F(X_{k}) \tag{A16}$$

where F(x) is the c.d.f. (eq. (A3)) of X.

This method becomes unwieldy, however, whenever F(x) cannot be expressed in closed form as in the preceding example. There do exist techniques for choosing from distributions in this case (e.g., the rejection method, ref. 14), but they need not be discussed here.

Another important aspect of random sampling from a given distribution is the result of summing the random numbers, or a function of the random numbers, obtained. For

instance, if a sequence of random numbers \mathbf{X}_k is chosen and distributed as $f(\mathbf{x})$, there is obtained upon summing

$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} X_{k} = E[X] = \int_{-\infty}^{+\infty} xf(x) dx$$
 (A17)

This is readily extended to

$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} g(X_k) = E[g(X_k)] = \int_{-\infty}^{+\infty} g(x)f(x)dx$$
 (A18)

For a particular case of interest in the text

$$\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} \frac{1}{U_k} = E\left[\frac{1}{U_k}\right] = \sqrt[4]{\pi}$$
(A19)

from equation (A6), where U is distributed as f(u) (eq. (A2)). A sample mean is defined as

$$\overline{g}_{N} = \frac{1}{N} \sum_{k=1}^{N} g(X_{k})$$
 (A20)

for finite N.

Standard Deviation

If the random variable X is distributed as f(x) and g(x) is an integrable function of x, then

$$E[g] \equiv \int_{-\infty}^{+\infty} g(x)f(x)dx$$

$$E[g^2] = \int_{-\infty}^{+\infty} g(x)^2 f(x) dx$$

and the standard deviation of g(x) is defined as

$$\hat{\sigma}_{g}^{2} = E[(g - E[g])^{2}] = \int_{-\infty}^{+\infty} \{g(x) - E[x]\}^{2} f(x) dx = E[g^{2}] - E[g]^{2}$$
(A21)

It is noted that this definition of $\hat{\sigma}_g$ is based on a knowledge of the p.d.f. of X. It can be shown that an unbiased estimate of $\hat{\sigma}_g$ can be obtained (ref. 10, p. 370, exercise 4.6) from a random sequence $\left\{g(X_k)\right\}$ by the formula

$$\sigma_{g}^{2} = \frac{1}{N-1} \sum_{k=1}^{N} \left[g(X_{k}) - \overline{g} \right]^{2}$$
 (A22)

Equation (A22) represents the computation performed in the text to obtain σ_{J} (see table I, p. 14).

Central Limit Theorem

This theorem (ref. 4, p. 362) is central to all Monte Carlo problems. It is based on the fact that regardless of the distribution of X, the sample means g (eq. (A20)) are distributed approximately as a normal distribution.

The central limit theorem can then be stated as

$$\lim_{N\to\infty} P\left[E(g) + \frac{\alpha\sigma_g}{\sqrt{N}} < \overline{g}_N < E(g) + \frac{\beta\sigma_g}{\sqrt{N}}\right] = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\beta} e^{-t^2/2} dt$$
 (A23)

For $\alpha = -1$ and $\beta = 1$, this theorem shows that the probability of the sample mean lying within $\pm \sigma_{\rm g}/\sqrt[4]{\rm N}$ of the true value is approximately 0.95.

APPENDIX B

COMPUTER PROGRAMS

by Harold E. Renkel

Curve Fitting Program

Subroutine CHEBY listing is a program for determining a finite approximation $f_N(x)$ in the least squares sense to data y_{α} obtained at the arguments x_{α} where

$$f_{\mathbf{N}}(\mathbf{x}) = \sum_{k=0}^{\mathbf{N}} a_k \mathbf{x}^k \tag{B1}$$

In the present problem the advantage is being able to choose the arguments before taking the data. This permits the application of Chebyshev polynomials as described by Lanczos (ref. 16). This method is both very powerful and very efficient. The coefficients \mathbf{a}_k in equation (B1) are obtained without the need of inverting a matrix as is usual in the ordinary method of least squares curve fitting.

The arguments x_{α} are found from

$$x_{\alpha} = \frac{1}{2} \left[\cos \theta_{\alpha} + 1 \right] \tag{B2}$$

where

$$\theta_{\alpha} = \alpha T/N$$

Then an expansion for $f_N(x)$ in terms of the shifted Chebyshev polynomial (ref. 16) $T_k(x)$ is obtained:

$$f_N(x) = \frac{1}{2}b_0 + \sum_{k=1}^{N}b_k T_k(x)$$
 (B3)

The coefficients bk are obtained from

$$b_{k} = \frac{1}{2} y_{0} + \sum_{\alpha=1}^{N-1} y_{\alpha} T_{k}(x_{\alpha}) + \frac{1}{2} y_{N} T_{k}(x_{N})$$
 (B4)

where

$$T_k(x_{\alpha}) \equiv \cos(k\theta_{\alpha}) = \cos(k\frac{\alpha\pi}{N})$$
 (B5)

and y_{α} are the data obtained at x_{α} .

Each Chebyshev polynomial, however, can be expressed as a power series in x with integral coefficients:

$$T_k(x) = \sum_{j=0}^{N} C_{kj} x^j$$
 (B6)

where the Cki can be obtained from the following recursion relations:

$$T_{k+1}(x) = 2(2x - 1)T_{k}(x) - T_{k-1}(x)$$

$$T_{0}(x) = 1$$

$$T_{1}(x) = -1 + 2x$$
(B7)

Substituting equation (B6) into equation (B3) yields the coefficients a_k (eq. (B1)):

$$a_k = \frac{1}{2} b_o C_{ok} + \sum_{j=1}^{N} b_j C_{jk}$$
 (B8)

In addition, subroutine CHEBY makes use of the symmetry of the trigonometric functions (eq. (B5)) as discussed in reference 17 to reduce the number of multiplications needed.

Gaussian Quadrature

The use of Monte Carlo techniques and variables based on random numbers for

numerically solving problems often demands that a large sampling of data be analyzed to obtain the necessary accuracy of the solution. Such large samplings may require many minutes and even hours of computing time if time saving methods are not employed. Subroutine QUAD is a Fortran IV program that numerically integrates a function f(x) over the range x_i to x_o . It is based on the method of Gaussian quadrature (ref. 18) which states that

$$\int_{x_{i}}^{x_{0}} f(x)dx = \sum_{j=1}^{n} H_{j}f(a_{j}) + E_{n}$$

where the H_j 's are a sequence of weight coefficients and the a_j 's are the associated abscissas that have been determined as the roots of certain orthogonal polynomials. The well-known error term E_n based on the $2n^{th}$ derivative of f(x) is not considered to be of such magnitude as to affect present calculations and therefore has been omitted from subroutine QUAD. In comparison to other more popular methods of numerical integration such as the trapezoidal formula and Simpson's rule, which require that the integrand be evaluated at many points over the range of integration $[x_i, x_o]$, Gaussian quadrature will produce the same accuracy with comparatively fewer evaluations of the integrand, which results in a considerable savings of computing time especially if the integrand f(x) contains trigonometric functions, logarithms, or square roots.

The subroutine in present form includes the weight coefficients and abscissas for n=3 through 16. To apply subroutine QUAD, the function f(x) to be integrated, the upper and lower limits of the integral x_i and x_o , and n the number of points of evaluation must all be specified. The program converts the abscissas from the range [-1,1] to the range $[x_i,x_o]$ by the algorithm

$$x_j(a_j) = X_i + \frac{1}{2}(x_0 - x_i)(a_j + 1)$$

evaluates the integrand f(x) and x_j , and calculates the sum of the products $H_j f(a_j)$. The final sum is then multiplied by the correction factor $\frac{1}{2}(x_0 - x_i)$ to compensate for the change in the range of the variable of integration.

When analyzing a function to be integrated by this method one must be careful to note any discontinuities in the range of integration $[x_i, x_o]$. If any should exist, then it becomes necessary to divide the region of integration into smaller intervals, choosing the new limits of integration so that comparatively small regions are established in the neighborhood of the discontinuity. This causes the integrand to be evaluated more often

in the neighborhood and results in a more accurate solution. The total integral for the interval $[x_i, x_o]$ is the usual sum of the integrals of each of the subdivisions.

APPENDIX C

FLOW CHARTS AND PROGRAM LISTINGS

The symbols used in the flow charts (figs. 12 to 16) are as follows:

DELX size of subdivisions

EN number of subdivisions

FPATH distance to collision

IC location number corresponding to XC

IFF location number of bound to region containing XC

IMIN location number corresponding to XMIN location number corresponding to XO

ITP location number corresponding to XTP

KI number of iterations

N number of histories per iteration PHIMIN magnitude of potential minimum

s path length along trajectory from XO to XTP or XC

TPHIX(I) tabulated values of $\varphi(y)$

USQ u^2 USQO u_0^2

 $vsQ v^2$

XC location of collision

XMIN location of potential minimum

XO location of scatter

XTP location of turning point

Figure 12. ~ System and MAIN program flow chart.

Figure 13. - Subroutine ITER flow chart.

Figure 15. - Subroutine XIC flow chart.

Figure 16. - Subroutine XITP flow chart.

A listing of the FORTRAN IV programs used to calculate the transport properties in a low ionized gas follows.

```
SIBFTC MAIN
                DEBUG DECK
                                                                              1 00031
      COMMON/BITER/NO,KI
                                                                              1 00040
      COMMON/BSTOSS/USQ. VSQ. COSN. ALPHA
                                                                              1 00050
      COMMON/BPHI/NPHI, APHI(20), NDPHI, ADPHI(20), NDEN
                                                                              1 00060
      COMMON/BMAIN/ CONST, VOLT(20), CURRNT(20)
                                                                              1 00070
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                                  075
      COMMON/BCHEB/N1, X(21), Y(21), COEFS(21), ERROR
                                                                              1 00080
      COMMON/BCHEB2/N2
                                                                              1 00081
      COMMON/BVEL/VEE(1024)
                                                                              1 00085
      DIMENSION DATE(2)
                                                                              1
                                                                                  095
      COMMON KNTR, N(20)
    NO * NUMBER OF TRIALS PER ITERATION
                                                                              1
                                                                                  110
    N1 = NUMBER OF POINTS WHERE DENSITY IS SAMPLED
                                                                              1
                                                                                  115
    KI = NUMBER OF ITERATIONS
                                                                              1
                                                                                  116
    ALPHA = RATIO OF MFP TO ELECTRODE SPACING
                                                                              1
                                                                                  117
    CONST = CONSTANT PRECEEDING DENSITY IN POISSONS EQUATION
                                                                              1
                                                                                  118
C
                                                                              1
                                                                                  119
    READ IN INITIAL DATA
                                                                              1
                                                                                  120
      READ(5,1) NO,N1,N2,KI,ALPHA,CONST
                                                                              1
                                                                                 0130
    1 FORMAT(415,2E10.0)
                                                                              1
                                                                                  140
      CALL COEF(1)
                                                                                  150
      READ(5,4) DATE
                                                                              1
                                                                                  151
    4 FORMAT(2A6)
                                                                              1
                                                                                  152
C.
                                                                                  155
    INITIALIZE PROGRAM
                                                                              1
                                                                                  160
      CALL SAND(RO)
                                                                              1
                                                                                  170
      CALL CHEBY(1)
                                                                                  180
                                                                              1
      CALL COEF(2)
                                                                                  190
      DEBUG (COEFS(I), I=1,11)
                                                                              1 00192
      DEBUG(APHI(I), 1=1,13)
                                                                              1 00192
      CALL CUMVEL
                                                                              1 00194
                                                                                  205
   COMPUTE COLLECTOR VOLTAGE AND CURRENT FOR EACH VALUE OF APHI(2)
                                                                              1
                                                                                  210
    5 READ(5,2) VOLT@20),ALPHA
                                                                                  220
   2 FORMAT(2E5.1)
                                                                                  230
                                                                             1
    3 CALL TIMEL(T1)
                                                                             1
                                                                                  233
                                                                                  234
   COMPUTE MEANS AND PRINT / PUNCH OUT RESULTS
                                                                                  235
                                                                             1
      WRITE(6,100) VOLT(20), CONST, ALPHA, NO, KI, N1, N2
                                                                             1
                                                                                 236
 100 FORMAT(1H1,
                     39H
                                      ANODE POTENTIAL IS
                                                                  ,F6.2/
                                                                                 237
            lX,
                      39HCONSTANT IN POISSONS EQUATION,
                                                               C = .F6.2/
    1
                                                                             1
                                                                                 238
                                               ALPHA=.1PE10.1/
     1 1X,39HDIMENSIONLESS MEAN FREE PATH
                                                                             1 00239
                     39HTRIALS PER ITERATION.
                                                              NO =, 15
                                                                             ı
                                                                                 240
     1 1X,39HNUMBER OF ITERATIONS
                                                  KI = , 12 /
                                                                             1 00243
                     39HNUMBERS OF SAMPLE POINTS,
            1X,
                                                              N1 =, I2
                                                                             1
                                                                                 244
                     39HNO. OF TERMS IN DENSITY FIT
            1Х,
                                                              N2 = 12
                                                                             1
                                                                                 245
     CALL ITER
                                                                                 250
                                                                             ı
      CALL DISCRM
                                                                             1
                                                                                 270
      CALL DISCR2(CURRNT, CM, CSTD)
                                                                             1 00290
      CALL CHEBY(2)
                                                                                 292
                                                                             1
     CALL COEF(2)
                                                                             1
                                                                                 293
     CALL COEF(3)
                                                                             ı
                                                                                 295
      CALL TIME1(T2)
                                                                             ı
                                                                                 296
      TIME=(T2-T1)/3600.
                                                                             1 00297
      WRITE(6,203) KNTR
                                                                             1
                                                                                 298
 203 FORMAT(1HO, 28HTOTAL NUMBER OF COLLISIONS =, 15/
                                                                                 299
                                                                             1
    11HO, 36HNUMBER OF ENTRIES AT EACH DATA POINT )
                                                                                 300
                                                                             1
     WRITE(6,204) \{N(I),I=I,NI\}
                                                                             1
                                                                                 301
 204 FORMAT(1H ,11110)
                                                                                 302
     WRITE(6,200) VOLT(20), APHI(2), CM, CSTD, XMIN, PHIMIN, TIME
                                                                                 303
 200 FORMAT(1HO, 17HANODE POTENTIAL =, F15.6, 6x, 28HPOTENTIAL SLOPE AT EMI 1
                                                                                 304
    1TTER =,F10.4/1H ,15HANODE CURRENT =,F15.6,6x,9HSTD.DEV.= ,F15.6/
                                                                                 305
    11HO,6HXMIN =,F15.6,6X,8HPHIMIN =,F15.6/1HO,6HTIME =,F6.3,
                                                                             1
                                                                                 306
    18H MINUTES )
                                                                             ı
                                                                                 307
     ELMFP=1./ALPHA
                                                                                 308
     WRITE(6,202) DATE, CONST, ELMFP, VOLT(20), CM, CSTD, APHI(2), NO, KI
                                                                                 309
 202 FORMAT(1H$, 2A6, F7.0, F6.2, F9.3, F9.4, F10.5, F8.2, I7, I4)
                                                                                 310
                                                                                 340
   PLOT DENSITY AND POTENTIAL DISTRIBUTION
                                                                                 350
     CALL PLOT
                                                                                 360
     GO TO 5
                                                                                 370
                                                                             1
     STOP
                                                                            1
                                                                                 380
     END
                                                                             1
                                                                                 390
```

```
DEBUG + DECK
$1BFTC ITER
                                                                              2 00741
      SUBROUTINE ITER
                                                                              2 00750
                                                                              2 00755
C MONTE CARLO CALCULATION OF DENSITY AND ITERATION ON POTENTIAL -
                                                                              2 00756
C
    DISTRIBUTION
                                                                              2 00757
                                                                              2 00758
      COMMON/BMAIN/ CONST. VOLT(20), CURRNT(20)
                                                                              2 00760
      COMMON/BITER/NO,KI
                                                                              2 00770
      COMMON/BNXF/XO, XF, XC, XTP, FPATH, S, NQUAD , K, II
                                                                              2 00780
      COMMON/BPHI/NPHI, APHI(20), NDPHI, ADPHI(20), NDDPHI
                                                                              2 00790
      COMMON/BCHEB/N1, X(21), Y(21), COEFS(21), ERROR
                                                                              2 00800
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                              2 00810
      COMMON/BNIF/IO, IC, ITP, PHIO, USQO
                                                                              2 00815
      COMMON/BSTOSS/USQ, VSQ, COSN, ALPHA
                                                                              2 00820
      COMMON/BVEL/ VEL(1024)
                                                                              2 00825
      COMMON/BTALLY/ ICM1, DEN(20,20)
                                                                              2 00830
      COMMON KNTR, N(11)
                                                                              2 00834
      DATA SQRTP1/1.77245385/
                                                                              2 00835
      INTEGER A
                                                                                0836
      EQUIVALENCE(A, KNTR2)
                                                                              2 0837
      DO 35 K=1,KI
                                                                              2 00840
      CALL TIME1(T1)
      NTHRU = 0.
                                                                              2 00850
      DO 10 I=1,N1
                                                                              2 00860
      N(1) = 0
                                                                              2 00865
   10 DEN(1.K) = 0.
                                                                              2 00870
C.
                                                                              2 00875
C DETERMINATION OF LOCATION AND MAGNITUDE OF POTENTIAL MINIMUM
                                                                              2 00876
      CALL MINPHI
                                                                              2 00880
      DEBUG(TPHID(I).I=1.11)
                                                                              2 00882
      KNTR=0
                                                                              2 00885
      KNTR2=0
                                                                                 0886
      DG 33 II=1,NO
                                                                              2 00900
      CALL RAND(R)
                                                                              2 00910
      J = IFIX(1024.*R)+1
                                                                              2 00920
      USQ = VEL(J)
                                                                              2 00925
      CALL RAND(R)
                                                                              2 00930
      J = IFIX(1024.*R) +1
                                                                              2 00940
      VSQ = VEL(J)
                                                                              2 00945
      CALL RAND(R)
                                                                              2 00950
      J = IFIX(1024.4R) +1
                                                                              2 00960
      FPATH = ALPHA VEL(J)
                                                                              2 00965
      X0=0.
                                                                              2 00980
      ICM1=0
                                                                              2 00990
      CALL FSCAT
                                                                              2 01000
   20 IF(ICM1.EQ.N1) GO TO 32
                                                                              2 01010
      IF(ICM1.EQ.O) GO TO 33
                                                                              2 01020
      CALL STOSS
                                                                              2 01030
      IF(COSN.LT.O.) GO TO 25
                                                                              2 01040
      CALL FSCAT
                                                                              2 01050
      GO TO 20
                                                                              2 01070
   25 CALL BSCAT
                                                                              2 01080
      GO TO 20
                                                                              2 01100
   32 NTHRU = NTHRU+1
                                                                              2 01110
   33 CONTINUE
                                                                              2 01120
      DO 34 I=1.N1
                                                                              2 01130
      DEN(I,K) = DEN(I,K)/(FLOAT(NO)*SQRTPI)
                                                                              2 01140
   34 Y(1)= DEN(1,K)
                                                                              2 01150
      DEBUG(Y(I), I=1,N1)
                                                                              2 01152
                                                                              2 01154
C CURVE FIT OF DENSITY AND COMPUTATION OF PHI(X) AND DPHI(X)
                                                                              2 01155
      CALL CHEBY(2)
                                                                              2 01160
                                                                              2 01175
      CALL COEF(2)
                                                                              2 01176
      VOLT(K)=TPHID(N1)
                                                                              2 01180
      CURRNT(K) = FLOAT(NTHRU)/FLOAT(NO)
                                                                              2 01190
      DEBUG(N(1), I=1,11)
                                                                              2 01192
      DEBUG KNTR
                                                                              2 01192
      DEBUG VOLT(K), CURRNT(K)
                                                                              2 01194
      CALL TIME1(T2)
TIME=(T2-T1)/3600.
                                                                                    2
                                                                                    2
      DEBUG TIME
   35 CONTINUE
                                                                              2 01195
      RETURN
                                                                              2 01200
                                                                              2 01210
      END
```

```
SIBFIC FSCAT
               DECK
      SUBROUTINE FACAT
                                                                              3 01230
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                                 1240
      COMMON/BNXF/XO, XF, XC, XTP, FPATH, S, NQUAD , K, II
                                                                              3 01250
      COMMON/BSTOSS/WSQ, VSQ, COSN, ALPHA
                                                                              3 01260
      COMMON/BNIF/10, IC, ITP, PHIO, USQO
                                                                              3 01270
      IO=EN+XO+1.5
                                                                              3
                                                                                 1270
      PHIC=TPHIX(IO)
                                                                              3 01275
                                                                              3 01276
      USQ0=USQ-PHIO
      IF(XO.GE.XMIN) GO TO 6
                                                                              3 01280
      IF(USQO.GT.-PHIMIN) GO TO 4
                                                                              3 01290
      CALL XITP
                                                                              3 01300
      IF(10.EQ. ITP) GO TO 10
                                                                              3
                                                                                 1305
      XF=XTP
                                                                              3
                                                                               01310
      CALL QUADGM
                                                                              3 01340
      DIF (K.EQ.1.AND.II.LE.5) DEBUG XTP,S
                                                                              3 01352
      IF(FPATH.GE. 2.*S) GO TO 3
                                                                              3 01360
      IF(FPATH.GE.S) GO TO 2
                                                                              3 01370
    1 CALL XIC
                                                                              3 01380
      DIF (K.EQ.1.AND.II.LE.5) DEBUG XC
                                                                              3 01392
      CALL TALLYI
                                                                              3 01400
     XD = XC
                                                                              3 01405
     RETURN
                                                                              3 01410
   2 XC=XTP
                                                                              3 01420
      CALL TALLY1
                                                                              3 01430
     FPATH=2.*S-FPATH
                                                                              3
                                                                                 1460
     GO TO 1
                                                                              3
                                                                                 1470
   3 CALL TALLY2
                                                                              3 01510
     FPATH = FPATH-2. +S
                                                                             3
                                                                                1514
  10 IF(XO.EQ.O.) RETURN
                                                                             3 01515
     XF=0.
                                                                             3 01520
     NQUAD=5
                                                                             3 01525
     CALL QUAD
                                                                             3 01540
     DIF (K.EQ.1.AND.II.LE.5) DEBUG FPATH, S
                                                                             3 01552
     IF(FPATH.LT.S) GO TO 1
                                                                             3
                                                                                1560
     XC≈XF
                                                                             3 01570
     CALL TALLYI
                                                                             3 01580
     RETURN
                                                                             3 01590
   6 SMAXSQ=(1.+VSQ/USQ)+(1.-X0)++2
                                                                             3 01600
     IF(FPATH*FPATH.GE.SMAXSQ) GO TO 5
                                                                             3 01603
   4 NQUAD=3
                                                                             3 01610
                                                                             3 01620
     IF(XO.LT..2)NQUAD=5
     IF(XO.LT..2.AND.USQ.LT..01) NQUAD =9
                                                                             3 01630
     XF=1.
                                                                             3 01640
     CALL QUAD
                                                                             3 01650
     DIF(K.EQ.1.AND.II.LE.5) DEBUG NQUAD,S
                                                                             3 01652
     IF(FPATH.GE.S) GO TO 5
                                                                             3 01660
   9 CALL XIC
                                                                             3
                                                                               1675
     DIF (K.EQ.1.AND.II.LE.5) DEBUG S.XC
                                                                             3 01682
     CALL TALLYI
                                                                             3 01690
     XO=XC
                                                                             3 01695
     RETURN
                                                                             3 01700
   5 XC=1.
                                                                             3 01710
     CALL TALLYI
                                                                             3 01720
     RETURN
                                                                             3 01730
                                                                             3 01740
     END
```

```
SIBFTC BSCAT
               DECK
      SUBROUTINE BSCAT
                                                                              4 01760
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                              4 01770
      COMMON/BNIF/10+IC. ITP. PHIO. USQO
                                                                              4 01775
      COMMON/BNXF/XO,XF,XC,XTP,FPATH,S,NQUAD ,K,II
                                                                              4 01780
      COMMON/BSTOSS/USQ, VSQ, COSN, ALPHA
                                                                              4 01790
      IO=EN#XO+1.5
                                                                                 1800
      PHIO=TPHIX(IO)
                                                                              4 01805
      USQ0=USQ-PHIO
                                                                              4 01806
      IF(XO.LT.XMIN)GO TO 4
                                                                              4 01810
      IF(USQO.GT .- PHIMIN) GO TO 4
                                                                              4 01820
                                                                              4 01830
      CALL XITP
      IF(10.EQ.ITP) GO TO 10
                                                                                1835
                                                                                 1840
      XF=XTP
                                                                               4 0186
      CALL QUADGM
      DIF (K.EQ.1.AND.II.LE.5) DEBUG XTP, S
IF(FPATH.GE. 2. S) GO TO 3
                                                                              4 01872
                                                                              4 01880
      IF(FPATH.GE.S) GO TO 2
                                                                              4 01890
                                                                              4 01900
    1 CALL XIC
                                                                              4 01912
      DIF (K.EQ.1.AND.II.LE.5) DEBUG XC
      CALL TALLYI
                                                                              4 01920
      XO=XC
                                                                                 1925
                                                                              4 01930
      RETURN
                                                                              4 01940
    2 XC=XIP
      CALL TALLYI
                                                                              4 01950
                                                                                 1980
      FPATH=2.#S-FPATH
      GO TO 1
                                                                                 1990
                                                                              4 02030
    3 CALL TALLY2
      FPATH = FPATH-2.*S
                                                                              4 02050
   10 SMAXSQ=(1.+VSQ/USQ)+(1.-X0)++2
                                                                              4 02060
      IF(FPATH*FPATH.GE.SMAXSQ) GO TO 6
                                                                              4 02065
      XF=1.
                                                                                 2066
      NQUAD=5
                                                                              4 02068
      CALL QUAD
                                                                              4 02070
      DIF (K.EQ.1.AND.II.LE.5) DEBUG FPATH, S
                                                                              4 02082
      IE(FPATH.LT.S) GO TO 1
                                                                              4 02090
    6 XC=1
                                                                                 2100
      CALL TALLYI
                                                                              4 02110
      RETURN
                                                                              4 02120
    4 NQUAD=5
                                                                              4 02130
      IF(USQ.LT..O1) NQUAD=9
                                                                              4 02140
      XF=0.
                                                                              4 02150
      CALL QUAD
                                                                              4 02160
      IF(FPATH.GE.S) GO TO 5
                                                                              4 02170
    9 CALL XIC
                                                                                 2180
                                                                              4 02192
      DIF (K.EQ.1.AND.II.LE.5) DEBUG S.XC
      CALL TALLY1
                                                                              4 02200
      XD=XC
                                                                              4 02205
      RETURN
                                                                              4 02210
    5 XC=0.
                                                                              4 02220
      CALL TALLYI
                                                                              4 02230
      RETURN
                                                                                 2320
      END
                                                                                 2330
SIBFTC STOSS
               DECK
      SUBROUTINE STOSS
                                                                              5 02270
                                                                              5 02274
C COMPUTATION OF COLEISION PARAMETERS FOR ELECTRON-NEUTRAL SCATTERING
                                                                              5 02275
                                                                              5 02276
      COMMON/BSTOSS/USQ, VSQ, COSN, ALPHA
                                                                              5 02280
      COMMON/BNXF/XO,XF,XC,XTP,FPATH,S,NQUAD ,K,II
                                                                              5 02290
      COMMON/BVEL/VEE(1024)
                                                                              5 02295
      COMMON/BNIF/10.IC. ITP. PHIO. USQO
                                                                                 2294
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A,B,C,DELX,EN
                                                                              5 02296
      WSQ=USQO+VSQ+TPHIX(IC)
                                                                              5 02300
      CALL RANDIRI
                                                                              5 02310
      COSN=1.-2.*R
                                                                              5 02320
      USQ=WSQ+COSN+COSN
                                                                              5 02330
      VSQ=WSQ-USQ
                                                                              5 02340
      CALL RAND(R)
                                                                              5 02350
      J=IFIX(1024.#R}+1
                                                                              5 02360
      FRATH=ALPHA+VEL(J)
                                                                              5 02365
      DIF (K.EQ.1.AND.II.LE.5) DEBUG USQ, VSQ, COSN, FPATH
                                                                              5 02372
      RETURN
                                                                              5 02380
                                                                              5 02390
      END
```

ı

```
6 02401
$IBFTC TALLY1 DECK
       SUBROUTINE TALLYL
                                                                                6 02410
       COMMON/BSTOSS/WSQ, VSQ, COSN, ALPHA
                                                                                6 02420
       COMMON/BNXF/XO.XF.XC.XTP.FPATH.S.NQUAD .K.II
                                                                                6 02430
       COMMON/BCHEB/N1, X(21), Y(21), COEFS(21), ERROR
                                                                                6 02440
       COMMON/BTALLY/ ICM1, DEN(20, 20)
                                                                                6 02450
       COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                                6 02460
       COMMON/BNIF/IO, IC, ITP, PHIO, USQO
                                                                                6 02465
       COMMON KNTR.N(11)
                                                                                6 02470
       IF(XO.GT.XC) GB TO 7
                                                                                6 02480
       I = ICM1
                                                                                6 02490
      GO TO 10
                                                                                6 02500
    1 DEN(I,K) = DEN&I,K) + 1./SQRT(TEST)
                                                                                6 02510
      DIF (K.EQ.1.AND.II.LE.5) DEBUG DEN(I,K)
                                                                                6 02512
      N(I)=N(I)+1
                                                                                6 02515
   10 I = I+1
TEST=USQO+TPHIB(I)
                                                                                6 02520
                                                                                6 02525
      IF(TEST.LE.O.) GO TO 3
IF(X(I).EQ.XC) GO TO 2
                                                                                6 02526
                                                                                6 02530
       IF(X(I).LT.XC) GO TO 1
                                                                                6 02535
                                                                                6 02536
      GO TO 3
    2 DEN(I,K) = DEN(I,K) + 1./SQRT(TEST)
                                                                                6 02540
      N(I) = N(I) + 1
                                                                                6 02545
      DIF (K.EQ.1.AND.II.LE.5) DEBUG DEN(I.K)
                                                                                6 02552
      ICM1=I
                                                                                6 02560
      RETURN
                                                                                6 02570
    7 I = ICM1+1
                                                                                6 02580
      GO TO 11
                                                                                6 02585
    4 DEN(I,K) = DEN(I,K) + 1./SQRT(TEST)
                                                                                6 02590
      N(I)=N(I)+1
                                                                                6 02595
                                                                                6 02602
      DIF (K.EQ.1.AND.II.LE.5) DEBUG DEN(I,K)
                                                                               6 02610
   11 I = 4-1
      TEST=USQO+TPHIB(I)
                                                                               6 02615
      IF(TEST.LE.O.) GO TO 6
                                                                                6 02616
       IF(X(I).EQ.XC) GO TO 5
                                                                                6 02620
      IF(X(I).GT.XC) GO TO 4
                                                                               6 02625
      GD TO 6
                                                                               6 02626
    5 DEN(I,K) = DEN(I,K) + 1./SQRT(TEST)
                                                                                6 02630
      N(1)=N(1)+1
                                                                                6 02635
      DIF (K.EQ.1.AND.II.LE.5) DEBUG DEN(I,K)
                                                                                6 02642
      ICM1=I-1
                                                                               6 02650
      RETURN
                                                                               6 02660
    3 ICM1=I-1
                                                                               6 02670
      RETURN
                                                                               6 02680
    6 ICM1=1
                                                                               6 02690
      RETURN
                                                                               6 02700
      END
                                                                               6 02710
$IBFTC TALLY2 DECK
                                                                               7 02721
      SUBROUTINE TALLY2
                                                                               7 02730
      COMMON/BTALLY/ ICM1, DEN(20, 20)
                                                                               7 02740
      COMMON/BSTOSS/USQ, VSQ, COSN, ALPHA
                                                                               7 02750
      COMMON/BNXF/XO,XF,XC,XTP,FPATH,S,NQUAD ,K,II
                                                                               7 02760
      COMMON/BCHEB/N1, X(21), Y(21), COEFS(21), ERROR
                                                                               7 02770
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                               7 02780
      COMMON/BNIF/IO, IC, ITP, EHIO, USQO
                                                                               7 02785
      COMMON KNTR, N(11)
                                                                               7 02786
      IF(XO.GT.XTP) GO TO 2
                                                                               7 02800
      I=ICM1
                                                                               7 02810
      GO TO 3
                                                                               7 02815
    1 DEN(I,K)=DEN(I,K)+2./SQRT(TEST)
                                                                               7 02820
      N(I)=N(I)+1
                                                                               7 02825
     DIF (K.EQ.1.AND.II.LE.5) DEBUG DEN(I,K)
                                                                               7 02832
   3 I*I+1
                                                                               7 02840
      TEST=USOO+TPHID(I)
                                                                               7 02845
      IF(TEST.GT.O..AND.X(I).LT.XTP ) GO TO 1
                                                                               7 02850
      RETURN
                                                                               7 02860
   2 I≈ ICM1+1
                                                                               7 02870
     GO TO 4
                                                                               7 02875
   5 DEN(I.K)=DEN(I.K)+2./SQRT(TEST)
                                                                               7 02880
     N(I)=N(I)+1
                                                                               7 02885
   4 I≈ I-1
                                                                               7 02890
     TEST=USQO+TPHID(I)
                                                                               7 02900
     IF(TEST.GT.O..AND.X(I).GT.XTP ) GO TO 5
DIF (K.EQ.1.AND.II.LE.5) DEBUG DEN(I,K)
                                                                               7 02910
                                                                               7 02912
     RETURN
                                                                               7 02920
```

END

```
8029051
SIBFTC DISCRM DECK
                                                                            8029060
      SUBROUTINE DISCRM
      REAL MEANL, MEAN2
                                                                            8029070
                                                                            8 29080
      COMMON/BITER/NO.K
      COMMON/BTALLY/ ICM1, DEN(20,20)
                                                                            8029090
      COMMON/BCHEB/N1, X(21), Y(21), COEFS(21), ERROR
                                                                            8029100
                                                                            8029110
      WRJTE46.1001
  100 FORMAT(1HL, 47H MEAN DENSITIES BEFORE AND AFTER DISCRIMINATION /1H 8029120
                           MEAN 1 STD.DEV.1 L HEAN 2 STD.DEV.2 /) 8029130
     1K. 58H I
                   ХD
      FKR = 1./FLOATOK)
      DO 9 I=1,N1
                                                                            8029150
      SUM1 = 0.
                                                                            8029160
      SUM2 = 0.
                                                                            8029170
                                                                            8029180
      00 13 J=1,K
      SUM1 = SUM1 + DEN(I,J)
                                                                            8029190
   13 SUM2 = SUM2 + DEN(I_*J) + DEN(I_*J)
                                                                            8029200
      MEAN1 =SUM1* FKR
                                                                            8029210
      STD1=SQRT((SUM2*FKR - MEAN1*MEAN1)/FLOAT(K-1))
                                                                            8 29220
      SUM 1=0
                                                                            8029230
                                                                            8029240
      SUM2=0
      L=0
                                                                            8029250
      DO 15 J=1.K
                                                                            8029260
      Q= DEN(I,J)-MEAN1
                                                                            8029270
                                                                            8 29280
      IF(ABS(Q).GT.3.*STD1) GO TO 15
      SUM1 = SUM1 + DEN(I,J)
                                                                            8029290
      SUM2 = SUM2 + DEN(I,J)+DEN(I,J)
                                                                            8029300
      L=L+1
                                                                            8029310
   15 CONTINUE
                                                                            8029320
      FER =1./FLOAT(E)
                                                                            8029330
                                                                            8029340
      MEAN2 = SUM1*FER
      STD2=SQRT((SUM2*FLR - MEAN2*MEAN2)/FLOAT(L-1))
                                                                            8 29350
      WRITE(6,120)4, X (I), MEANI, STD1, L, MEAN2, STD2
                                                                            8029360
                                                                            8029370
  120 FORMAT(1H ,1X, 12, 1X, 3F10.6, 1X, 12, 1X, 2F10.6)
      Y(I)=MEAN2
                                                                            8029380
    9 CONTINUE
                                                                            8029390
      RETURN
                                                                            8029400
      END
                                                                            8029410
$IBFTC DISCR2 DECK
                                                                            9029421
      SUBROUTINE DISGR2 (A, AMEAN, ADEV)
                                                                            9029430
      COMMON/BITER/NO.K
                                                                            9029440
      DIMENSION A(20)
                                                                            9029450
      REAL MEANI, MEAN2
                                                                            9029460
      FKR = 1./FLOATEK)
                                                                            9029470
      SUM1 = 0.
                                                                            9029480
      SUM2 = 0.
                                                                            9029490
      DO 13 J=1.K
                                                                            9029510
      SUM1 - SUM1 + A(J)
                                                                            9029520
   13 SUM2 * SUM2 + A(J) *A(J)
                                                                            9029530
      MEAN1 =SUM1+ FKR
                                                                            9029540
      STD1 = SQRT((SUM2*FKR - MEAN1*MEAN1)/FLOAT(K-1) )
                                                                            9 29550
                                                                            9029560
      SUN1=0
      SUM2=0
                                                                            9029570
      1 =0
                                                                            9029580
      DØ 15 J=1.K
                                                                            9029590
      X=A(J)-MEAN1
                                                                            9029600
      IF(ABS(X).GT.3.*STD1) GO TO 15
                                                                            9 29610
                                                                            9029615
      SUM1=SUM1+A(J)
      SUM2 = SUM2 + A(J) + A(J)
                                                                            9029620
      L=L+1
                                                                            9029630
   15 CONTINUE
                                                                            9029640
      FLR =1./FLOAT(E)
                                                                            9029650
      MEAN2 = SUM1#FER
                                                                            9029660
      STD2 = SQRT((SWM2*FLR - MEAN2*MEAN2)/FLOAT(L-1))
                                                                            9 29670
      AMEAN=MEAN2
                                                                            9029680
      ADEV=STD2
                                                                            9029690
      RETURN
                                                                            9029700
      END
                                                                            9029710
```

```
SIBFTC QUAD
                                       DECK. DEBUG
                                                                                                                                                                                                  10029721
               SUBROUTINE QUAD
COMMON/BNXF/XI,XO,XC,XTP,FPATH,S,NQUAD ,K,II
COMMON/BSTOSS/WSQ,VSQ,COSN,ALPHA
                                                                                                                                                                                                  10029730
                                                                                                                                                                                                  10029750
                                                                                                                                                                                                  10029755
                COMMON/BNIF/IO, IC, ITP, PHIO, USQO
                                                                                                                                                                                                  10029756
                                                                                                                                                                                                  10029790
               DIMENSION A(70), H(70)
            DIMENSION A(70:, H470)

REAL INTGRL

DATA (A(I),H(I:,I=1,28)/

1.774596669241483E=01, 5.55555555 55556E=01,-0.

1.774596669241483E=01, 5.61136311 94053E=01, 3.47854845137454E=01,10030070

1.39981043584856E=01, 6.52145154 62546E=01, 9.06179845938664E=01,10030080

1.2.36926885056189E=01, 5.38469310 05683E=01, 4.78628670499366E=01,10030090

1.0.

1.71324492379170E=01, 6.61209386 66265E=01, 3.60761573048139E=01,10030110

1.2.38619186083197E=01, 4.67913934 72691E=01, 9.49107912342759E=01,10030120

1.2.29484966168870E=01, 7.41531185 99394E=01, 2.79705391489277E=01,10030130
            1 1.29484966168870E-01, 7.41531185 99394E-01, 2.79705391489277E-01,10030130 1 4.05845151377397E-01, 3.81830050 05119E-01,-0. E-00,10030140 1 4.17959183673469E-01, 9.60289856 97536E-01, 1.01228536290376E-01,10030150 1 7.96666477413627E-01, 2.22381034 53374E-01, 5.25532409916329E-01,10030160 1 3.13706645877887E-01, 1.83434642 95650E-01, 3.62683783378362E-01,10030170 1 9.68160239507626E-01, 8.12743883 15740E-02, 8.36031107326636E-01,10030180 1 1.80648160694857E-01, 6.13371432 00590E-01, 2.60610696402935E-01,10030190 1 3.224253423403809E-01, 3.12347077 40003E-01,-0. E-00,10030200 1 3.30239355001260E-01, 9.73906528 17172E-01, 6.66713443086880E-02,10030210 1 8.65063366688985E-01, 1.49451349 50581E-01, 6.79409568299024E-01,10030220 1 2.19086362515982E-01, 4.33395394 29247E-01, 2.69266719309996E-01,10030230 1 1.48874338981631E-01, 2.95524224 14753E-01/
DATA (A(1),H(1),1=29,56)/
               DATA (A(I),H(I1,I=29,56)/
                9.78228658146057E-01, 5.56685671 61740E-02, 8.87062599768095E-01,10030260 1.25580369464905E-01, 7.30152005 74049E-01, 1.86290210927734E-01,10030270 5.19096129206812E-01, 2.33193764 91990E-01, 2.69543155952345E-01,10030280
                5.87317954286617E-01, 2.03167426 23066E-01, 3.67831498998180E-01,10330320
2.33492536538355E-01, 1.25233408 11469E-01, 2.49147045813403E-01,10030330
9.84183054718588E-01, 4.04840047 53160E-02, 9.17598399222978E-01,10030340
9.21214998377280E-02, 8.01578090 33310E-01, 1.38873510219787E-01,10030350
6.42349339440340E-01, 1.78145980 61946E-01, 4.48492751036447E-01,10030360
2.07816047536889E-01, 2.30458315 55135E-01, 2.26283180262897E-01,10030370
-0. E-00, 2.32551553 30874E-01, 9.86283808696812E-01,10030380
3.51194603317520E-02, 9.28434883 63574E-01, 8.01580871597600E-02,10030390
             1-0.
                8.27201315069765E-01, 1.21518570 87903E-01, 6.87292904811685E-01,10030400 1.57203167158194E-01, 5.15248636 58154E-01, 1.85538397477938E-01,10030410 3.19112368927890E-01, 2.05198463 21296E-01, 1.08054948707344E-01,10030420
            1 2.15263853463158E-01, 9.87992518 20485E-01, 3.07532419961170E-02,10030430
1 9.37273392400706E-01, 7.03660474 81080E-02/
              DATA (A(I), H(I), I=57,70)/
                                                                                                                                                                                                10030450
            1 8.48206583410427E-01, 1.07159220 67172E-01, 7.24417731360170E-01,10030460 1 1.39570677926154E-01, 5.70972172 08539E-01, 1.66269205816994E-01,10030470 1 3.94151347077563E-01, 1.86161000 15562E-01, 2.01194093997435E-01,10030480
                1.98431485327112E-01,-0. E-00, 2.02578241925561E-01,10030490
9.89400934991650E-01, 2.71524594 17540E-02, 9.44575023073233E-01,10030500
6.22535239386480E-02, 8.65631202 87832E-01, 9.51585116824930E-02,10030510
                7.55404408355003E-01, 1.24628971 55534E-01, 6.17876244402644E-01,10030520 1.49595988816577E-01, 4.58016777 57227E-01, 1.69156519395003E-01,10030530 2.81603550779259E-01, 1.82603415 44924E-01, 9.50125098376370E-02,10030540
                1.89450610455068E-01/
                                                                                                                                                                                                10030550
                                                                                                                                                                                                10029810
              EQUIVALENCE (N.NQUAD)
               XOFA(A)=XI+(X0-XI)+(1.+A)+.5
                                                                                                                                                                                                10029820
              INTGRL=0.0
                                                                                                                                                                                                10029830
  INDKT = MOD(N, 2)+1
INDKT = 1, N 13 EVEN
INDKT = 2, N 13 ODD
GO TO (204, 210), INDKT
204 MIN=(N+N)/4-1
                                                                                                                                                                                                10029840
                                                                                                                                                                                                10029850
                                                                                                                                                                                                10029860
                                                                                                                                                                                                10029870
                                                                                                                                                                                                10029880
              MAX=(N+(N+2))/4 -2
                                                                                                                                                                                                10029890
              GO TO 215
                                                                                                                                                                                                10029900
   210 MIN= (N*N-9)/4 +1
MAX= (N*(N+2)-11)/4
                                                                                                                                                                                                10029910
                                                                                                                                                                                                10029920
   215 DO 220 I=1,2
DO 220 J=MIN, MAX
                                                                                                                                                                                                10029930
                                                                                                                                                                                                10029940
              A(J) = -A(J)
                                                                                                                                                                                                10029950
              X=XOFA(A(J))
                                                                                                                                                                                                10029960
                                                                                                                                                                                                10029970
              TEST=USOO+PHI(X)
              IF(TEST.LE.O.) GO TO 1
                                                                                                                                                                                                10029975
                =SQRT(1.+VSQ/TEST)
                                                                                                                                                                                                10029976
   220 INTGRL= INTGRL+H(J)*F
GO TO (250,225), INDKT
                                                                                                                                                                                                10029980
                                                                                                                                                                                                10029990
             X=XOFA(A(MAX+1))
                                                                                                                                                                                                10030000
              TEST=USQO+PHI(X)
IF(TEST.LE.O.) GO TO 1
                                                                                                                                                                                                10030010
                                                                                                                                                                                                10030015
              F=SQRT(1.+VSQ/TEST)
                                                                                                                                                                                                10030016
            INTGRL = INTGRL+H(MAX+1)*F
INTGRL=.5*(XO-XI)*INTGRL
                                                                                                                                                                                                10030020
                                                                                                                                                                                                10030030
              S=ABS( INTGRL)
                                                                                                                                                                                                10030035
              RETURN
                                                                                                                                                                                               10030040
        1 CONTINUE
                                                                                                                                                                                               10
                                                                                                                                                                                                10030056
              S±0
             RETURN
                                                                                                                                                                                               10030057
                                                                                                                                                                                               10030560
             END
```

```
11030571
$IBFTC PHI
                DECK
                                                                              11030580
      FUNCTION PHI(Z)
      COMMON/BPHI/NDEG.
                            B(20), NDPHI, ADPHI(20), NDDPHI
                                                                              11030590
                                                                              11030600
      LI=NDEG+1
      P=8(LI)+Z+8(NDEG)
DB 100 I=2, NDEG
                                                                              11030610
                                                                              11030620
                                                                              11030630
      LJ=LI-I
  100 P#8(LJ)+Z#P
                                                                              11030640
      PHI=P
                                                                              11030650
                                                                              11030660
      RETURN
                                                                              11030670
      END
                                                                              12030681
$IBFTC BPHI
                DECK
      FUNCTION DPHI(Z)
                                                                              12030690
      COMMON/BPHI/NPHI, APHI(20), NDEG,
                                             B(20), NDDPHI
                                                                              12030700
                                                                              12030710
      LI=NDEG+1
                                                                              12030720
      P=B(LI) +Z+B(NDEG)
      DD 100 I=2. NDEG
                                                                              12030730
                                                                              12030740
      LJ=LI-I
                                                                              12030750
  100 P=B(LJ)+Z*P
      DPHI=P
                                                                              12030760
      RETURN
                                                                              12030770
      END
                                                                              12030780
                                                                              13 30791
$IBFTC DENS
               DECK
      FUNCTION DENS(Z)
                                                                              13 30800
                                                                              13030810
      COMMON/BCHEB/X(43), B(21), ERROR
      COMMON/BCHEB2/ĿI
                                                                              13030815
                                                                              13030820
      NDEG=LI-1
                                                                              13 30830
13 30840
      P*B(LI)
      DO 100 I=1, NDE6
      LJ=LI-I
                                                                              13030870
                                                                              13030880
  100 P=B(LJ)+Z*P
                                                                              13 30890
      DENS=P
                                                                              13030900
      RETURN
      END
                                                                              13030910
                                                                              14 00010
$18FTC MINPHI DEBUG, DECK
                                                                              14 00020
      SUBROUTINE MINPHI
      COMMON/BMIN/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                              14 00030
                                                                              14 00040
      COMMON/BCHEB/N1,X(21),DUMMY(43)
                                                                              14 00050
      DATA N/1024/
      PHIMIN = 0
                                                                              14 00060
                                                                              14 0065
      IMIN=1
                                                                              14 00070
      EN=N
                                                                              14 00080
      DELX = 1./FLOAT(N)
                                                                              14 00090
      DO 1 I=1.N1
    1 \text{ TPHID}(I) = PHILX(I))
                                                                              14 00100
                                                                              14 00110
      M = N+1
                                                                              14 00120
      TPHIX(1) = 0
                                                                              14 00130
      DO 2 I=2.M
U=DELX#FLOAT(I-1)
                                                                              14 0140
                                                                              14 00150
      TPHIX(I) = PHI(U)
                                                                              14 00160
      IF (PHIMIN.LT.TPHIX(1)) GO TO 2
      PHIMIN = TPHIX(I)
                                                                              14 00170
                                                                              14 00180
      IMIN = I
                                                                              14 00190
    2 CONTINUE
      XMIN=DELX#FLOAT(IMIN-1)
                                                                              14 0200
                                                                              14 00270
       DEBUG XMIN, PHIMIN
                                                                              14 00320
      RETURN
       END
                                                                              14 00350
```

```
SIBETC XIC
                       DECK
                                                                                                                   0000
         C XIC DECK
SUBROUTINE XIC
COMMON/BSTOSS/USQ, VSQ, COSN, ALPHA
COMMON/BNIF/IQ, IC, ITP, PHIO, USQO
COMMON/BNXF/XO, XF, XC, XTP, FPATH, S, NQUAD, K, II
COMMON/BNI/XMIN, PHIMIN, IMIN, TPHID(33), TPHIX(1026), A, B, C, DELX, EN
                                                                                                                    0010
                                                                                                             15
                                                                                                                    0020
                                                                                                                   0030
                                                                                                                   0040
          DIMENSION I(3) DSX(3)
                                                                                                                   0055
         COMMON KNTR,N(11)
KNTR=KNTR+1
                                                                                                                   0060
                                                                                                                   0100
                                                                                                              15
          1(1)=10
                                                                                                                   0110
          IFF=FN+XF+1.5
                                                                                                             15
                                                                                                                   0120
          F=FPATH
                                                                                                                   0130
                                                                                                             15
          Q±VSQ/USQ
                                                                                                             15
                                                                                                                   0144
     DSX(1)=SQRT(1.+Q)
10 M=(IFF-I(1))/4
                                                                                                                   0146
0150
                                                                                                             15
                                                                                                             15
          IF(IABS(M).EQ.0) GO TO 30
MM=ALOGIO(Q)
                                                                                                             15
                                                                                                                   0160
                                                                                                                   0162
          MN=2++(4-MM)
          IF(M.GT.MN) M=MN
IF(MM.GT.4) M=1
                                                                                                             15
15
                                                                                                                   0166
0167
          EM=M
                                                                                                             15
                                                                                                                   0170
         H=ABS(EM+DELX/3.)
                                                                                                             15
                                                                                                                   0180
         DO 11 J=2,3
I(J)=I(J-1)+M
IJ=I(J)
Q=USQO+TPHIX(IJ)
                                                                                                             15
                                                                                                             15
15
15
                                                                                                                   0200
0205
                                                                                                                   0206
         Q=VSQ/4
IF(Q.LI.O.) GO TO 61
                                                                                                             15
                                                                                                                   0208
                                                                                                             15
                                                                                                                   0209
                                                                                                             15
15
15
     11 DSX(J)=SQRT(1.+Q)
S$=H*4DSX(1)+4.*DSX(2)+DSX(3))
                                                                                                                   0210
                                                                                                                   0230
         IF(Y.LT.O.) GO TO 20
I(1)=I(3)
                                                                                                             15
15
                                                                                                                   0240
0250
         D$X(1)=D$X(3)
                                                                                                                   0260
         F=Y
GD TO 10
                                                                                                             15
15
                                                                                                                   0270
                                                                                                                   0280
     20 IFF=1(3)
GO TO 10
30 M=(IFF-1(1))/2
                                                                                                                   0290
                                                                                                                   0300
                                                                                                             15
                                                                                                                   0310
         IF(IABS(M).EQ.O) GO TO 60
I(2)=I(1)+M
                                                                                                             15
                                                                                                                  0320
                                                                                                                   0335
         Q=USQQ+TPHIX(12)
                                                                                                                  0340
0344
                                                                                                             15
         DSX(2)=SQRT(1.+VSQ/Q)
         EN=M
                                                                                                            15
                                                                                                                  0350
         H=ABS4 EM=DELX+.5)
                                                                                                            15
15
                                                                                                                  0360
         SS=H*(DSX(1)+DSX(2))
                                                                                                                  0370
         Y=F-SS
IF(Y.LT.O.)GO TO 40
I(1)=I(2)
                                                                                                            15
                                                                                                                  0380
0390
                                                                                                                  0400
         DSX(1)=DSX(2)
                                                                                                            15
                                                                                                                  0410
0420
         F=Y
    GO TO 30
40 IC=I(2)
50 XC=DELX*FLOAT(1C+1)
                                                                                                                  0430
0440
                                                                                                            15
                                                                                                            15
                                                                                                                  0450
                                                                                                            15
         RETURN
                                                                                                                  0560
    60 IC=IFF
GO TO 50
61 IC=IO
                                                                                                            15
                                                                                                                  0565
                                                                                                                  0570
                                                                                                            15
                                                                                                                  0680
                                                                                                            15
         RETURN
                                                                                                                  0690
                                                                                                                  0700
         ENC
SIBFTC XITP
                      DECK
                                                                                                            16
                                                                                                                  0000
        CATIP DEUK
SUBROUTINE XITP
COMMON/BSTOSS/WSQ.VSQ.COSN,ALPHA
COMMON/BNXF/XO,XF,XC,XTP,FPATH,S,NQUAD,K,II
COMMON/BNIN/XMJN,PHIMIN,IMIN,TPHID(33),TPHIX(1026),A,B,C,DELX,EN
COMMON/BNIF/IQ,IC,ITP,PHIO,USQO
                                                                                                            16
                                                                                                                  0010
                                                                                                            16
                                                                                                                  0030
                                                                                                            16
                                                                                                                  0050
                                                                                                                  0040
                                                                                                            16
         I1=EN+X0+1.5
                                                                                                                  0100
                                                                                                                  0110
         12= IMIN
                                                                                                            16
     1 M=(12-11)/2
                                                                                                            16
                                                                                                                  0120
         IF(M.EQ.0) GO TO 5
                                                                                                            16
                                                                                                                  0130
         1 = 11+M
                                                                                                            16
                                                                                                                  0140
         TEST=USQO+TPHIX(I)
                                                                                                                  0150
                                                                                                                 0160
         IF(TEST)2,4,3
                                                                                                            16
     16
                                                                                                            16
                                                                                                                 0180
                                                                                                            16
                                                                                                                 0190
                                                                                                                  0200
                                                                                                            16
                                                                                                                 0210
        GO TO 6
                                                                                                                  0220
                                                                                                            16
     5 ITP=I1
                                                                                                                 0230
     6 XTP=DELX+FLOAT(I-1)
                                                                                                                 0240
        DIF(K.EQ.1.AND.II.LE.5) DEBUG ITP, USQO, TPHIX(ITP-1), TPHIX(ITP),
                                                                                                                 0250
                                                                                                            16
                                                                                                                 0260
        RETURN
                                                                                                            16
                                                                                                                 0270
```

END

```
19
                                                                                         11
$IBFTC COEF
                DECK
       SUBROUTINE COEF(MODE)
                                                                                  19
                                                                                         20
       COMMON/BCHEB2/N2
                                                                                  19
                                                                                         24
       COMMON/8PHI/NPHI, APHI(20), NDPHI, ADPHI(20), NDEN
                                                                                  19
                                                                                         25
       COMMON/BCHEB/N1, X(42), COEFS(22)
                                                                                  19
                                                                                         26
                                                                                  19 00027
       COMMON/BMAIN/ CONST, VOLT(20), CURRNT(20)
                                                                                  19 00028
       DATA KNTR/O/
       GO TO (1,2,3), MODE
                                                                                  19
                                                                                         30
                                                                                  19
                                                                                         40
     MODE 1 = READ INDITIAL APHI(2), N1, COEFS
                                                                                  19
                                                                                         45
     1 CALL BCREAD(X(41),COEFS(11))
                                                                                  19
                                                                                         50
       APHI(2) = X(41)
                                                                                  19
                                                                                         54
                                                                                  19
                                                                                         55
       NDPHI=X(42)
                                                                                  19
                                                                                         56
       RETURN
                                                                                  19
                                                                                         60
    MODE 2 = COMPUTE COEFFICIENTS OF PHI AND DPHI
                                                                                  19
                                                                                         65
                                                                                  19 00070
     2 IF(KNTR.NE.O) NDPHI=N2
       NPHI=NDPHI + 1
                                                                                  19
                                                                                         75
       NDEN ≖NDPHI - 1
                                                                                  19
                                                                                         80
       APHI(2)=VOLT(20)
                                                                                  119
                                                                                         85
                                                                                  19
                                                                                         90
       DO 20 I=1.NDPH1
       APHI(I+2) = CONST*COEFS(I)/FLOAT(I*(I+1))
                                                                                  19
                                                                                         92
   20 APHI(2)=APHI(2)-APHI(1+2)
                                                                                         94
       IF(KNTR.EQ.O) APHI(2)=A
                                                                                         96
                                                                                  19
                                                                                         98
      KNTR=1
                                                                                        100
      DO 21 I=1.NPHI
                                                                                  19
   21 ADPHI(I) = APHI(I+1)*FLOAT(I)
                                                                                  19
                                                                                        105
      RETURN
                                                                                  19
                                                                                        110
                                                                                  19
                                                                                       120
    MODE 3 = PRINT COEFS
                                                                                  19
                                                                                       125
              PUNCH APHI(2), NI, COEFS
                                                                                  19
                                                                                       126
                                                                                  19
                                                                                       130
    3 WRITE(6,30)(COEFS(I), I=1,N1)
   30 FORMAT(1HO, 5HCOEFS/1H,8F15.6/1H,3F15.6)
                                                                                  19 00135
                                                                                  19 00140
      X(41)=APHI(2)
                                                                                  19 00145
      X(42) = N2
      CALL BCDUMP(X(41), COEFS(11))
                                                                                  19 00146
                                                                                  19
                                                                                       150
      RETURN
                                                                                  19
                                                                                       155
      END
$IBFTC PLOT
                DECK
                                                                                 20 00011
      SUBROUTINE PLOT
                                                                                 20 00020
                                                                                 20 00023
   PLOTS OF FINAL DENSITY AND POTENTIAL DISTRIBUTIONS
                                                                                 20 00024
      COMMON/BITER/NO.KI
                                                                                 20 00025
      COMMON/BCHEB/N1,U(21),V(21),COEFS(21),ERROR
                                                                                 20 00030
                                                                                 20 00040
      COMMON/BPHI/NPHI, APHI(20), NDPHI, AB(21)
      COMMON/BSTOSS/NSQ, VSQ, COSN, ALPHA
                                                                                 20 00046
      COMMON/BMAIN/ CONST, VOLT(20), CURRNT(20)
DIMENSION PD(11), PP(11), X1(26), X2(26), D(26), PH(26)
DATA PD/26.,0.,5.,10.,0.,2.,-20000.,500.,4.,0.,1./
                                                                                 20 00045
                                                                                 20 00050
                                                                                 20 00060
                                                                                 20 00070
      DATA PP/26.,0.,5.,10.,0.,5.,-200.,4.,4.,0.,1./
      DO 1 I=1,26
                                                                                 20 00080
      X1(I) = .04 • FLOAT(I-1)
X2(I) = X1(I)
                                                                                 20 00090
                                                                                 20 00100
      D(I) = -DENS(XI(I))
                                                                                 20 00110
    1 PH(I) = - PHI(XI(I))
                                                                                 20 00120
      PP(7)= AINT(PH(26))-1.
                                                                                 20 00125
                                                                                 20 00126
      PP(7)=10.*PP(7)
                                                                                 20 00130 20 00140
      CALL SORTXY(D, X1, 26)
      CALL SORTXY(PH, X2, 26)
      WRITE(6,2)
                                                                                 20 00150
    2 FORMAT(2HPT, 50X, 30HELECTRON DENSITY DISTRIBUTION )
                                                                                 20 00160
      CALL PLOTXY(D,X1,118,PD)
                                                                                  20 0017
    WRITE(6,3)APHI(2),CONST,ALPHA,NO,N1,KI 20 00180 3 FORMAT(2HPL,20X, 29HAPHI(2),CONST,ALPHA,NO,N1,KI/ ,F5.2,1H,,F7.2, 20 00190
     11H,,E10.1,1H,, I6,1H,,I2,1H,,I2)
                                                                                 20 00200
                                                                                 20 00210
      WRITE(6,4)
    4 FORMAT(2HPT, 55X,22HPOTENTIAL DISTRIBUTION )
                                                                                 20 00220 20 00230
      CALL PLOTXY(PH, X2, 118, PP)
      WRITE(6,5)APHIU2),CONST,ALPHA,NO,N1,KI
                                                                                 20 00240
    5 FORMAT(2HPL,20X, 29HAPHI(2),CONST,ALPHA,NO,N1,KI/ ,F5.2,1H,,F7.2, 20 00250
     11H,,E10.1,1H,, I6,1H,,I2,1H,,I2)
                                                                                 20 00260
                                                                                 20 00270
      RETURN
                                                                                 20 00280
      END
```

```
COMMON/BVEL/VEL(1024)
                                                                                                               21 00030
                                                                                                               21 00035
         DATA NMC/1024/
                                                                                                               21 00040
         DELX=1./FLOAT(NMC)
         DO 1 I=1, NMC
                                                                                                               21 00050
         X DELX + (FLOAT(1-1)+.5)
                                                                                                               21 00060
      1 VEL(I) =-ALOG(X)
                                                                                                               21 00070
         RETURN
                                                                                                               21 00080
                                                                                                               21 00090
         END
SIBFTC QUADGM DECK
         SUBROUTINE QUADGM
C
         MODIFIED GAUSS MEHLER QUADRATURE
                                                                                                               GMQU0030
C
         NUMERICAL INTEGRATION OF FOFX(X)/SQRT(X-XO) FROM XO TO XF
                                                                                                               GMQU0040
         COMMON/BNIF/IO+IC+ITP+PHIO+USQO
         COMMON/BNXF/XF&XI,XC,XO ,FPATH,S,NQUAD ,K,II
         COMMON/BSTOSS/USQ, VSQ, COSN, ALPHA
                                                                                                               GMQU0050
         DIMENSION Y(331,A(33)
         REAL INTGRL
                                                                                                               GMQU0060
         DATA N/5/
                                                                                                               GMQU0062
         DATA (Y(I), A(I), I=1,33)/
                                                                                                               GMQU0070
       1 0.56939116E-01, 0.93582787E-00, 0.43719785E-00, 0.72152315E-00,
                                                                                                               GMQU0080
       1 0.86949939E-00, 0.34264898E-00, 0.33648268E-01, 0.72536757E-00, 1 0.27618431E-00, 0.62741329E-00, 0.63467748E-00, 0.44476207E-00, 1 0.92215661E-00, 0.20245707E-00, 0.22163569E-01, 0.59104845E-00,
                                                                                                               GMQU0090
                                                                                                               GMQU0100
                                                                                                               GMQU0110
       1 0.92215661E-00, 0.20245707E-00, 0.22163569E-01, 0.59104845E-00, 1 0.18783157E-00, 0.53853344E-00, 0.46159736E-00, 0.43817273E-00, 1 0.74833463E-00, 0.29890270E-00, 0.94849393E-00, 0.13334269E-00, 1 0.15683407E-01, 0.49829409E-00, 0.13530001E-00, 0.46698507E-00, 1 0.34494238E-00, 0.40633485E-00, 0.59275013E-00, 0.32015666E-00, 1 0.81742801E-00, 0.21387865E-00, 0.96346128E-00, 0.94350673E-01, 1 0.11675872E-01, 0.43052771E-00, 0.10183270E-00, 0.41039693E-00, 1 0.26548116E-00, 0.37107680E-00, 0.47237154E-00, 0.31440633E-00, 1 0.68426202E-00, 0.24303714E-00, 0.86199133E-00, 0.16031617E-00, 0.7238921E-01, 0.90273770E-02, 0.37890122E-00.
                                                                                                               GMQU0120
                                                                                                               GMQU0130
                                                                                                               GMQU0140
                                                                                                               GMQU0150
                                                                                                               GMQU0160
                                                                                                               GMQU0170
                                                                                                               GMQU0180
                                                                                                               GMQU0190
       1 0.97275575E-00, 0.70238921E-01, 0.90273770E-02, 0.37890122E-00,
                                                                                                               GMQU0200
       1 0.79300560E-01, 0.36520683E-00, 0.20977937E-00, 0.33831304E-00,
                                                                                                               GMQU0210
       1 0.38177105E-00, 0.29919198E-00, 0.57063582E-00, 0.24925794E-00,
                                                                                                               GMQU0220
       1 0.74931738E-00, 0.19031702E-00, 0.89222197E-00, 0.12450705E-00,
                                                                                                               GMQU0230
       1 0.97891421E-00, 0.54304919E-01/
                                                                                                               GMQU0240
         FOFX(X,Y)=SQRT(ABS(X-XO) *(1.+VSQ/Y))
                                                                                                               GMQU0242
         XOFY(Y) = XO + (XF - XO) * Y
                                                                                                               GMQU0250
         INTGRL=0.
                                                                                                               GMQU0260
                                                                                                               GMQU0270
         MIN=N*(N-1)/2 -2
                                                                                                               GMQU0280
         MAX=MIN+N-1
                                                                                                               GMQU0290
         DO 210 J=MIN, MAX
         X=XOFY(Y(J))
                                                                                                               GMQU0300
         Z=USQO+PHI(X)
                                                                                                               GM
                                                                                                                    0310
         IE(Z.LE.O.) GO TO 211
                                                                                                               GM
                                                                                                                     0312
         F = FOFX(X \cdot Z)
                                                                                                               GM
                                                                                                                     0314
                                                                                                               GMQU0320
```

\$IBFTC CUMVEL DECK

SUBROUTINE CUMVEL

210 INTGRL=INTGRL+A(J) *F

S=ABS(INTGRL)

RETURN

RETURN

END

211 S=0

INTGRL=SQRT(ABS(XF-XO)) * INTGRL

GMQU0330

GMQU0332

GMQU0340

GMQU0342

GMQU0344

GMQU0350

21 00010 21 00020

APPENDIX D

SYMBOLS

[All dimensioned variables in cgs-esu units.]

a _k C	coefficients, eq. (24) dimensionless constant, eqs. (6), (8), and (10) coefficients, eq. (25)	l _c m N _c	dimensionless path length for collision, eq. (2) mass of electron, eq. (5) number of electrons striking collision.
$egin{array}{l} E[\] \\ e \\ F_u(V), F_V(u) \end{array}$	expectation value of [], eq. (A4) electronic charge, eq. (7) marginal distributions,	N _O	lector, eq. (22) total number of histories, eq. (22) dimensionless electron density, eq. (6)
f(u)	eqs. (12) and (13) probability distribution function, eq. (A2)	n̂ n _o	electron density, eq. (7) electron density of emitted flux, eq. (7)
f(u, V)	dimensionless velocity distribution function, eq. (4)	P[] p(r)	probability of [], appendix A uniform probability distribution function, eq. (A7)
g(X)	function of random variable X, appendix A	R_k	uniformly distributed random numbers
$\overline{g}_{\mathbf{N}}$	sample mean of $g(x)$, eq. (A20)	s T	path length, eq. (3) emitter temperature, eq. (5)
J	electron current to collector, eq. (22)	U	random variable, appendix A
J_0	electron emission cur- rent, eqs. (8) and (22)	u	dimensionless x-component of velocity, eqs. (5) and (9)
k	Boltzmann's constant, eq. (5)	u _o V	initial velocity, eq. (20) dimensionless velocity component
L L	interelectrode separation, eq. (2) dimensionless path length,	∜ (x)	transverse to the x-direction potential distribution
	eq. (3)		

v_{o}	initial velocity of monoener-	θ *	capture angle, eq. (34)
	getic emission, eq. (9)	λ	mean free path, eq. (3)
$\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}, \mathbf{v}_{\mathbf{z}}$	components of velocity	$\boldsymbol{\hat{\sigma}_g}$	theoretical standard deviation,
X, Y	random variables, appendix A	8	eq. (A20)
x	spatial coordinate, eq. (7)	$\sigma_{\mathbf{g}}$	sample deviation, appendix A
У	dimensionless spatial coordinate, eq. (7)	$^{\sigma}\!\mathrm{J}$	standard deviation of current to collector
y_c	location of collision, eq. (29)	arphi	dimensionless potential distribu-
y _o	location of last event, eq. (29)		tion: thermionic emission, eq. (7); monoenergetic emis-
α	dimensionless reciprocal		sion, eq. (9)
	mean free path, eq. (3)	Ω	solid angle, eq. (1)
$\Gamma_{\mathbf{c}}$	flux to collector	[]	integral value
Γ_{0}	emitted flux	{ }	sequence of terms { }, appen-
θ	scattering angle, eq. (1)		dix A

REFERENCES

- 1. Grad, H.: Theory of Rarefied Gases. Proc. Int. Symposium on Rarefied Gas Dynamics, Devienne, F. M., ed., Pergamon Press, 1959, p. 100.
- Sockol, Peter M.: Flow of Electrons Through a Neutral Scattering Gas in a Thermionic Diode. Report on the Thermionic Conversion Specialist Conference, IEEE, Cleveland (Ohio), October 1964, pp. 170-177. (Also available from TIS, AIAA as A65-16980.)
- 3. Langmuir, I.: The Effect of Space Charge and Initial Velocities on the Potential Distribution and Thermionic Current Between Parallel Plane Electrodes. Phys. Rev., vol. 21, Apr. 1923, pp. 419-435. (See also The Collected Works of Irving Langmuir. Vol. 3. Pergamon Press, 1961, pp. 95-110.)
- 4. Langmuir, I.; and Jones, H. A.: Collisions Between Electrons and Gas Molecules. Phys. Rev., vol. 31, Mar. 1928, pp. 357-404. (See also The Collected Works of Irving Langmuir. Vol. 5. Pergamon Press, 1961, pp. 60-110.)
- 5. Meyer, H. A., ed.: Symposium on Monte Carlo Methods. John Wiley & Sons, Inc., 1956, p. vi.
- Goertzel, Gerald; and Kalos, Malvin H.: Monte Carlo Method in Transport Problems. Prog. in Nuclear Energy, ser. 1, Phys. and Math., Vol. 2, D. J. Hughes, J. E. Sanders and J. Horowitz, eds., Pergamon Press, 1958, pp. 315-369.
- 7. Brown, G. W.: Monte Carlo Methods. Modern Mathematics for the Engineer, E. F. Beckenbach, ed., McGraw-Hill Book Co., Inc., 1956, pp. 279-303.
- 8. Kraft, R.; and Wensrich, C. J.: Monte Carlo Methods, A Bibliography Covering the Period 1949 to 1963. Rept. No. UCRL-7823, Lawrence Radiation Lab., Apr. 1, 1964.
- 9. Fleck, J. A., Jr.: The Calculation of Nonlinear Radiation Transport by a Monte Carlo Method. Methods in Computational Physics, Vol. 1, B. Alder, ed., Academic Press, 1963, pp. 43-65.
- 10. Burger, P.: The Opposite-Stream Plasma Diode. Rept. No. SEL-64-012, Stanford Electronics Lab., 1964, p. 41.
- 11. Itoh, T.; and Musha, R.: Monte Carlo Calculations of the Motions of Electrons in Helium. J. Appl. Phys., vol. 31, no. 4, Apr. 1960, pp. 744-745.
- 12. Kennard, E. H.: Kinetic Theory of Gases. McGraw-Hill Book Co., Inc., 1938.
- 13. Parzen, E.: Modern Probability Theory and Its Applications. John Wiley & Sons, Inc., 1960.

- 14. Goldstein, C. M.; and Goldstein, A. W.: Effect of Electron Neutral Elastic Scattering on Low-Pressure Diode Characteristics. Bull. Am. Phys. Soc., ser. 2, vol. 9, no. 4, 1964, p. 469.
- 15. Kahn, Herman: Applications of Monte Carlo. Rept. No. RM-1237-AEC, Rand Corp., Apr. 27, 1956, p. 91, ff.
- 16. Lanczos, Cornelius: Applied Analysis. Prentice Hall, Inc., 1956, p. 229, ff.
- 17. Danielson, G. C.; and Lanczos, C.: Some Improvements in Practical Fourier Analysis and Their Application to X-Ray Scattering From Liquids. J. Franklin Inst., vol. 233, no. 4, Apr. 1942, pp. 365-380.
- 18. Kopal, Zdenek: Numerical Analysis. Chapman & Hall, Ltd., 1961, p. 347, ff.

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546